
A Foundational Proof Framework for
Cryptography

ঊ ঍঒জজ঎ছঝঊঝ঒ঘগ ঙছ঎জ঎গঝ঎঍
ঋঢ

A঍ঊখ P঎ঝঌ঑঎ছ
ঝঘ

T঑঎ Sঌ঑ঘঘক ঘএ Eগঐ঒গ঎঎ছ঒গঐ ঊগ঍ Aঙঙক঒঎঍ Sঌ঒঎গঌ঎জ

঒গ ঙঊছঝ঒ঊক এঞকএ঒ককখ঎গঝ ঘএ ঝ঑঎ ছ঎હঞ঒ছ঎খ঎গঝজ
এঘছ ঝ঑঎ ঍঎ঐছ঎঎ ঘএ

Dঘঌঝঘছ ঘএ P঑঒কঘজঘঙ঑ঢ
঒গ ঝ঑঎ জঞঋও঎ঌঝ ঘএ
Cঘখঙঞঝ঎ছ Sঌ঒঎গঌ঎

Hঊছটঊছ঍ Uগ঒ট঎ছজ঒ঝঢ
Cঊখঋছ঒঍ঐ঎, Mঊজজঊঌ঑ঞজ঎ঝঝজ 

Mঊঢ 2015
Distribution A: Public Release



©2014 – A঍ঊখ P঎ঝঌ঑঎ছ
ঊকক ছ঒ঐ঑ঝজ ছ঎জ঎ছট঎঍.

T঑঒জ ঠঘছঔ ঒জ জঙঘগজঘছ঎঍ ঋঢ ঝ঑঎ Uগ঒ঝ঎঍ Sঝঊঝ঎জ A঒ছ Fঘছঌ঎ ঊগ঍ ঝ঑঎ Iগঝ঎কক঒ঐ঎গঌ঎ A঍-
টঊগঌ঎঍ R঎জ঎ঊছঌ঑ Pছঘও঎ঌঝজ Aঌঝ঒ট঒ঝঢ ঞগ঍঎ছ A঒ছ Fঘছঌ঎ Cঘগঝছঊঌঝ #FA8721-05-C-0002.
Oঙ঒গ঒ঘগজ, ঒গঝ঎ছঙছ঎ঝঊঝ঒ঘগজ, ঌঘগঌকঞজ঒ঘগজ, ঊগ঍ ছ঎ঌঘখখ঎গ঍ঊঝ঒ঘগজ ঊছ঎ ঝ঑ঘজ঎ ঘএ ঝ঑঎
ঊঞঝ঑ঘছ ঊগ঍ ঊছ঎ গঘঝ গ঎ঌ঎জজঊছ঒কঢ ঎গ঍ঘছজ঎঍ ঋঢ ঝ঑঎ Uগ঒ঝ঎঍ Sঝঊঝ঎জ Gঘট঎ছগখ঎গঝ.



Thesis advisor: Professor Greg Morrisett Adam Petcher

A Foundational Proof Framework for Cryptography

Aঋজঝছঊঌঝ

I present a state-of-the-art mechanized framework for developing and checking proofs of secu-
rity for cryptographic schemes in the computational model. This system, called the Foundational
Cryptography Framework (FCF) is based on the Coq proof assistant, and it provides a sophisticated
mechanism for reasoning about cryptography on top of a simple semantics and a small trusted com-
puting base. All of the theory and logic of FCF is proved correct within Coq, thus ensuring that all
security results are trustworthy. FCF improves the state of the art by providing a fully foundational
system that enjoys the same ease of use of current non-foundational systems.

Facts proved using FCF include the security of El Gamal encryption, HMAC, and an e୭୮ୢcient
searchable symmetric encryption (SSE) scheme. The proof related to the SSE scheme is among the
most complex mechanized cryptographic proofs, and this proof demonstrates that FCF can be used
to prove the security of complex schemes in a foundational manner.

FCF provides a language for probabilistic programs, a theory that is used to reason about pro-
grams, and a library of tactics and de୮ୢnitions that are useful in proofs about cryptography. Proofs
provide concrete bounds as well as asymptotic security claims. The framework also includes an oper-
ational semantics that can be used to reason about the correctness and security of implementations
of cryptographic systems.

iii



Contents

1 Iগঝছঘ঍ঞঌঝ঒ঘগ 1

2 Bঊঌঔঐছঘঞগ঍ 4
2.1 The Coq Proof Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Proofs in Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Mechanized Frameworks for Cryptographic Proofs . . . . . . . . . . . . . . . . . 9

3 Fছঊখ঎ঠঘছঔD঎জ঒ঐগ 12
3.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Framework Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Cryptographic Arguments in FCF . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 T঎ঌ঑গ঒ঌঊক D঎জঌছ঒ঙঝ঒ঘগ 30
4.1 Probabilistic Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Theory of Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Program Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Asymptotic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Operational Semantics and Reasoning about Code . . . . . . . . . . . . . . . . . 43
4.6 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Eডঊখঙক঎ Pছঘঘএজ 49
5.1 El Gamal Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Symmetric Encryption from a Pseudorandom Function . . . . . . . . . . . . . . 58
5.3 A Negative Example: Dual_EC_DRBG . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

iv



6 S঎ঊছঌ঑ঊঋক঎ Sঢখখ঎ঝছ঒ঌ Eগঌছঢঙঝ঒ঘগ 72
6.1 Searchable Symmetric Encryption Proof Overview . . . . . . . . . . . . . . . . . 74
6.2 Single Keyword Searchable Symmetric Encryption from Tuple Sets . . . . . . . . 75
6.3 Tuple Set Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Proof Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Pছঘটঊঋকঢ S঎ঌঞছ঎ Iখঙক঎খ঎গঝঊঝ঒ঘগজ 100
7.1 Extracting Code from FCFModels . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Verifying C Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Sঞখখঊছঢ ঊগ঍ Cঘগঌকঞজ঒ঘগ 113
8.1 Choosing a Cryptographic Proof Framework . . . . . . . . . . . . . . . . . . . . 114
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Aঙঙ঎গ঍঒ড A A঍঎હঞঊঌঢ ঘএ Oঙ঎ছঊঝ঒ঘগঊক S঎খঊগঝ঒ঌজ 118
A.1 The Value of Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2 Adequacy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

R঎এ঎ছ঎গঌ঎জ 130

v



Listing of ୮ୢgures

2.1 Semantic Security Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Semantics of Probabilistic Computations . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Semantics of Computations with Oracle Access . . . . . . . . . . . . . . . . . . 35
4.3 Small-step Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 PRF Encryption Sequence of Games . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 SSE Security Proof Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Single-Trial TୖSet Security Games . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Illustration of “Many to Core” Argument . . . . . . . . . . . . . . . . . . . . . 89
6.4 Single-Trial TୖSet Correctness Games . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1 HMAC Security Proof Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vi



1
Introduction

Cryptographic algorithms and protocols are becoming more numerous, specialized, and compli-

cated. The security of these schemes is traditionally ensured by the development of a mathematical

proof of security, or by widespread e୭forts to ୮ୢnd weaknesses. The latter approach is probably im-

practical for specialized systems, and the former approach su୭fers from the issue that many of these

proofs are not carefully veri୮ୢed. To address this problem, some cryptographers 15,34 have proposed an

increased level of rigor and formality for cryptographic proofs. The ultimate goal of this formality is

1



the development of a system that allows cryptographers to describe cryptographic schemes and se-

curity proofs using a formal language that allows the proofs to be checked automatically by a highly

trustworthy mechanized proof checker.

To enable such mechanically-veri୮ୢed proofs, I have developed The Foundational Cryptography

Framework (FCF). This framework embeds into the Coq proof assistant 37 a simple probabilistic

programming language to allow the speci୮ୢcation of cryptographic schemes, security de୮ୢnitions, and

assumptions. The framework also includes useful theory, tactics, and de୮ୢnitions that assist with

the construction of proofs of security. Once complete, the proof can be checked by the Coq proof

checker. FCF improves on existing tools for checking cryptographic proofs by signi୮ୢcantly increas-

ing the trustworthiness of the result and providing other desirable features such as integration with

Coq and reasoning about implementations.

This paper is organized as follows: I begin by providing some background (Chapter 2) on cryp-

tographic proofs and the technology used to mechanize them. Then I explain the design of FCF

(Chapter 3) and introduce the proof development process using a number of simple examples.

Chapter 4 provides a complete technical and theoretical description of FCF.

I developed several example proofs in FCF in order to exercise the framework and provide infor-

mation on how to develop such proofs, and these are described in Chapter 5. An important con-

sideration for a mechanized cryptography framework is the degree to which the framework and

proof techniques scale to proofs about complex systems. To demonstrate the scalability of FCF, I

completed a mechanized proof of security for a complex searchable symmetric encryption scheme

(Chapter 6). FCF was designed to support reasoning about implementations of cryptographic sys-

tems as well as models of cryptographic schemes. In Chapter 7 I describe the process of verifying

implementations of cryptographic schemes, including an e୭fort that produced a mechanized proof

of security for an e୭୮ୢcient implementation of HMAC.

Finally, I summarize the current state of the art of mechanized cryptographic proofs in Chapter 8

2



and suggest some courses for future work.

3



2
Background

FCF builds on a large amount of existing work in the ୮ୢelds of formal reasoning tools and cryptogra-

phy. In this chapter, I provide some background information on the Coq proof assistant, proofs in

cryptography, and existing tools and frameworks for formal reasoning about cryptography.

4



2.1 T঑঎ Cঘচ Pছঘঘএ Aজজ঒জঝঊগঝ

Coq is a proof assistant that can be used to develop and check mathematical proofs. This system

includes a language called Gallina for specifying de୮ୢnitions, algorithms, statements and proofs. The

process of writing a proof in Gallina is somewhat unnatural, so Coq also includes a language called

Ltac which allows the developer to construct proofs in a more natural way by a applying a sequence

of tactics.

A simple example is provided to familiarize the reader with Coq. Listing 1 uses Coq’s Inductive

mechanism to de୮ୢne the set of natural numbers. Listing 2 contains a recursive de୮ୢnition of “less

than or equal to” (≤) for natural numbers. Listings 3 and 4 contain proofs that ≤ is re୯୳exive and

transitive, respectively. These proof proceed by induction on the set of natural numbers, which is

possible because Coq automatically produced an induction principle from the inductive de୮ୢnition

of natural numbers.

(* Data types are defined inductively *)

(* A natural number is either zero or the

successor of a natural number *)

Inductive Natural :=

| zero : Natural

| successor : Natural -> Natural.

Listing 1: Inductive Data Type for Natural Numbers

(* NatLE is a function that defines what it means

for a Natural to be less than or equal to

another Natural. Prop (Proposition) is the

type of Coq statements. *)

Fixpoint NatLE(n1 n2 : Natural) : Prop :=

match n1 with

| zero => True

| successor n1’ =>

match n2 with

| zero => False

| successor n2’ =>

NatLE n1’ n2’

end

end.

Listing 2: ≤ for Natural Numbers

5



Theorem NatLE_refl : forall n1,

NatLE n1 n1.

(* induction on n1 *)

induction n1.

(* base case: NatLE zero zero *)

(* simplify this term to get True *)

simpl.

(* True is trivially true *)

trivial.

(* step case:

NatLE (successor n1) (successor n1) *)

(* simplify this term to get NatLE n1 n2 *)

simpl.

(* apply induction hypothesis *)

apply IHn1.

Qed.

Listing 3: Reflexivity of≤

Theorem NatLE_trans : forall n1 n2 n3,

NatLE n1 n2 ->

NatLE n2 n3 ->

NatLE n1 n3.

(* induction on n1, then destruct other terms *)

(* intuition splits goals and discharges

trivial ones *)

induction n1; intuition; simpl in *.

destruct n2; intuition; simpl in *.

destruct n3; intuition; simpl in *.

(* automatically apply induction hypothesis *)

eauto.

Qed.

Listing 4: Transitivity of≤

2.2 Pছঘঘএজ ঒গ Cছঢঙঝঘঐছঊঙ঑ঢ

Proofs in cryptography are typically given in the form of a reduction that proves the security of some

scheme or construction assuming some other problem (or set of problems) is hard for a computationally-

bounded adversary to solve. If I want to prove that scheme 𝑆 is secure assuming that problem 𝑇 is

hard, I start by assuming that there is some adversary 𝐴 that can effectively defeat the security of

scheme 𝑆 . Then I use 𝐴 to construct a procedure 𝐵 that can effectively solve problem 𝑇 . In doing

so, I have produced a contradiction, and the initial assumption of the existence of 𝐴 must be false.

The desired notion of security of a cryptographic scheme is expressed using “games”, in which an

6



adversary is required to interact with the scheme in a particular way. A game produces a bit which

is used to determine whether the adversary wins the game. For example, semantic security (Figure

2.1) is a desirable property of encryption schemes in which the adversary chooses a plaintext and is

given either the corresponding ciphertext or the encryption of some constant value. The adversary

produces a bit to indicate whether he was given a ciphertext corresponding with his chosen plain-

text, and he wins the game if this bit is correct. Security de୮ୢnitions may be given in the form of a

single game, as in the semantic security game in Figure 2.1, or in the form of a pair of games that that

the adversary should be unable to distinguish. In the corresponding semantic security de୮ୢnition

using two games, the adversary is given the encryption of his selected plaintext in one game and the

encryption of the constant value in another. In both games, the adversary produces a bit, and he

wins if this bit is noticeably di୭ferent in the two games. Note that, in both cases, the de୮ୢnitions are

concerned with the dॷtributions on the bits produced by the games.

..Game. Adversary.

generate key 𝑘

.

𝑝

.

𝑏 $← {0, 1}

.

if 𝑏 then Encrypt(𝑘, 𝑝)
else Encrypt(𝑘, 0𝑛)

.

𝑏ດ

.

Adversary wins if 𝑏 = 𝑏ດ

Figure 2.1: Semantic Security Game

7



The “e୭fectiveness” of an adversary must be carefully measured in order for a proof to be mean-

ingful. E୭fectiveness has two components: the resources available to the adversary and the proba-

bility that the adversary wins the game. In the computational model, the resource available to the

adversary is a limited amount of running time, but other models limit the storage used, the number

of oracle queries allowed, or any other resources.

A traditional proof of security describes a family of schemes and adversaries indexed by a natural

number 𝜂. For example, an encryption scheme may support keys of length 𝜂 for any value of 𝜂, and

the security of the scheme is expected to increase as 𝜂 increases. In this setting the resources and suc-

cess probability of the adversary can be determined as functions of 𝜂. Typically, the scheme is secure

if any adversary with an amount of resources that is polynomial in 𝜂 (e.g. probabilistic polynomial

time) has negligible probability of winning the game.

It is of୴en helpful to prove the exact security of some cryptographic scheme. That is, the probabil-

ity of an adversary winning the security game is given as an expression. This expression may include

𝜂 (if applicable) or the parameters describing the resources available to the adversary. In this set-

ting, assumptions related to the hardness of certain problems show up as terms in this expression.

For example, a bound on the probability that at an adversary defeats an encryption scheme may

be a sum, where the ୮ୢrst term is the probability that some other (constructed) adversary is able to

distinguish a pseudorandom function from a random function, and the second term is the proba-

bility of a (highly unlikely) collision. In the case of this example, this expression must be inspected

to conclude that it is “su୭୮ୢciently small” assuming that the ୮ୢrst term is small. It is possible to de-

rive asymptotic claims from these concrete bounds, but they are also very valuable in practice, since

they provide precise guidance for selecting system parameters in order to obtain the desired level of

security.

A popular method for developing and expressing cryptographic proofs is the “sequence of games”

style 15. Instead of directly proving that some probability value is small or that two of these values are

8



“close”, I can develop a sequence of games and prove that each game in the sequence is appropri-

ately related to the game that precedes it. The goal is to use this sequence to transform some initial

game into a game that obviously has some desired property (e.g. it corresponds to a small proba-

bility value or it exactly equals some other game in a security de୮ୢnition). The relation on a pair of

games may indicate that the games correspond to identical distributions, that some probability value

is less than another, or the probability values are separated by at most some “small” value. These

proofs can be more manageable since each pair of games corresponds to a very small transformation,

and each of these transformations can be inspected individually. This style of proof can provide ex-

act security results, since the ୮ୢnal expression can be determined by summing the non-zero distances

between pairs of games.

The “sequence of games” style is ideal for formal reasoning about cryptographic proofs, because

it can be used to divide a complex proof into several smaller reasoning steps. Each of these steps is

relatively simple because only the transformation in question must be considered, and the detail

associated with the rest of the cryptographic scheme and proof can be ignored. As a result of this

simpli୮ୢcation, the search space is greatly reduced, and proof search (performed either by a human or

an automated tool) is expedited. A signi୮ୢcant bene୮ୢt of mechanized proofs in this style is that the

sequence of games does not need to be trusted or inspected—it is merely a tool used to develop the

୮ୢnal result of the proof.

2.3 M঎ঌ঑ঊগ঒ণ঎঍ Fছঊখ঎ঠঘছঔজ এঘছ Cছঢঙঝঘঐছঊঙ঑঒ঌ Pছঘঘএজ

Several mechanized systems have been developed to check cryptographic proofs in the “sequence of

games” style.

CryptoVerif20 was one of the ୮ୢrst systems for reasoning about cryptographic proofs in the com-

putational model. This system is completely automated, and it can even produce the sequence of

9



games from a model of the construction and the desired security property. CryptoVerif is very lim-

ited in the sorts of constructions and security properties that it supports. Notably, the tool only

supports security properties related to secrecy and authenticity. As a result, CryptoVerif cannot

reason about many interesting areas of cryptography including foundations (e.g. pseudorandom

functions, oblivious transfer), certain applications (e.g. multiparty computation, zero-knowledge

proofs), and even variations on schemes that provide secrecy or authenticity (e.g. searchable/homo-

morphic/functional encryption). The language of CryptoVerif is also limited because it does not

contain loops. This limitation is necessary to support automation, but it prevents CryptoVerif from

reasoning about constructions that require certain forms of looping behavior.

The ୮ୢrst fully-general system for reasoning about cryptography was CertiCrypt 11, which was later

followed by EasyCrypt9. CertiCrypt is a framework that is built on Coq, and allows the develop-

ment of mechanized proofs of security in the computational model for arbitrary cryptographic con-

structions. Unfortunately, proof development in CertiCrypt is time-consuming, and the developer

must spend a disproportionate amount of time on simple, uninteresting goals. To address these lim-

itations, the group behind CertiCrypt developed EasyCrypt, which has a similar semantics and logic,

and uses the Why3 framework and SMT solvers to improve proof automation. EasyCrypt takes a

huge step forward in terms of usability and automation, but it sacri୮ୢces some trustworthiness due

to that fact that the trusted computing base is larger and the basis of the mechanization is a set of

axiomatic rules.

EasyCrypt represents the state-of-the-art in general-purpose frameworks for formally reasoning

about cryptographic schemes. This system has several limitations, though, and chief among them

is its lack of a mechanism to extend the tool in a trustworthy manner. Extensibility is crucial to the

viability of a cryptographic framework because the framework must be able to handle new sorts of

constructions and theory, and it must support new methods of reasoning about the behavior of

constructions. FCF was designed to provide the “ease of use” of EasyCrypt combined with a trust-

10



worthy mechanism to extend the framework and a generally increased level of trustworthiness.

11



3
Framework Design

In this chapter, I describe the design goals of FCF and introduce the framework using a series of

examples. Since FCF was designed to combine the usability of EasyCrypt with an increased level of

trustworthiness, I will also compare FCF to EasyCrypt with respect to these design goals.

12



3.1 D঎জ঒ঐগ Gঘঊকজ

Based on my experience working with EasyCrypt, I formulated a set of idealized design goals that a

practical mechanized cryptography framework should satisfy.

Familiarity. Security de୮ୢnitions and descriptions of cryptographic schemes should look similar

to how they would appear in cryptography literature, and a cryptographer with no knowledge of

programming language theory or proof assistants should be able to understand them. Furthermore,

a cryptographer should be able to inspect and understand the foundations of the framework itself.

Proof Automation. The system should use automation to reduce the e୭fort required to develop

a proof. Ideally, this automation is extensible, so that the developer can produce tactics for solving

new kinds of goals.

Trॸtworthinॶs. Proofs should be checked by a trustworthy procedure, and the core de୮ୢnitions

(e.g., programming language semantics) that must be inspected in order to trust a proof should be

relatively simple and easy to understand.

Exprॶsivity. It should be possible to express any known cryptographic security de୮ୢnition, con-

struction, or model in the language of the framework. Further, the framework should be able to

check a mechanized form of any cryptographic proof.

Extensibility. It should be possible to directly incorporate any existing theory that has been de-

veloped for the proof assistant. For example, it should be possible to directly incorporate an existing

theory of lattices in order to support cryptography that is based on lattices and their related assump-

tions. The framework should also support trustworthy addition of new theory for reasoning about

the behavior of cryptographic constructions.

Concrete Security. The security proof should provide concrete bounds on the probability that an

adversary is able to defeat the scheme. Concrete bounds provide more information than asymptotic

statements, and they inform the selection of values for system parameters in order to achieve the

13



desired level of security in practice.

Abstraction. The system should support abstraction over types, procedures, proofs, and mod-

ules containing any of these items. Abstraction over procedures and primitive types is necessary for

writing security de୮ୢnitions, and for reasoning about adversaries in a natural way. The inclusion

of abstraction over proofs and structures adds a powerful mechanism for developing sophisticated

abstract arguments that can be reused in future proofs.

Secure Implementations. The system should be able to reason about the security of implementa-

tions of cryptographic systems. The implementation could be produced by extracting code from a

model, or by proving that some code is equivalent to the model.

3.2 Fছঊখ঎ঠঘছঔ Iগঝছঘ঍ঞঌঝ঒ঘগ

This section provides a brief introduction to the Foundational Cryptography Framework. FCF is

explained by example, and all of the examples in this section are elements of larger proofs described

in later chapters.

3.2.1 Pছঘঋঊঋ঒ক঒জঝ঒ঌ Pছঘঐছঊখজ

FCF provides a common probabilistic programming language for describing all cryptographic con-

structions, security de୮ୢnitions, and problems that are assumed to be hard. Probabilistic programs

are described using Gallina, the purely functional programming language of Coq, extended with a

computational monad that adds sampling uniformly random bit vectors. The type of probabilistic

computations that return values of type A is Comp A. The code uses {0,1}^n to describe sampling

a bit vector of length n. Arrows (e.g. <-$) denote sequencing (i.e. bind) in the monad. Other nota-

tion used in the listings will be described when its meaning is not apparent.

Listing 5 contains an example program implementing a one-time pad on bit vectors of length

14



Definition OTP c (x : Bvector c) : Comp (Bvector c)
:= p <-$ {0, 1}^c; ret (BVxor c p x)

Listing 5: Example Program: One-Time Pad

c (for any natural number c). The program produces a random bit vector and stores it in p, then

returns the xor (using the standard Coq function BVxor) of p and the argument x.

3.2.2 S঎খঊগঝ঒ঌজ ঊগ঍ Pছঘঋঊঋ঒ক঒ঝঢ T঑঎ঘছঢ

The language of FCF has a denotational semantics that relates programs to discrete, ୮ୢnite probabil-

ity distributions. A distribution on type 𝐴 is modeled as a function in 𝐴 → ℚ which should be

interpreted as a probability mass function. This semantics can be used to show that the probabili-

ties of two events are equal, related by an inequality, or distant by at most some value. All of these

claims are necessary in order to complete proofs in the “sequence of games” style, in which several

games are provided, and relations on adjacent pairs of games are proven. The semantics can also be

used to determine an exact value for the probability of an event, which is necessary to provide con-

crete bounds in security proofs.

FCF provides a theory of distributions that can be used to complete proofs without appealing

directly to the semantics. FCF also provides a library of tactics that apply individual theorems, se-

quences of theorems, or perform non-trivial computations in order to discharge goals. The theory is

all proven in Coq from the semantics, and the tactics only apply theorems, so these objects are not in

the trusted computing base of FCF.

Using the theory and tactics, I can complete proofs as shown in Listing 6. In this proof, I show

that a one-time pad applied to an arbitrary value has the same distribution as a random bit vector.

In the statement of the theorem, D represents the denotational semantics, which is used to obtain

the distribution corresponding to the program that follows it. Because these distributions are rep-

resented as functions, I compare them with respect to an arbitrary value y in the distribution. I use

15



the notation Pr[c] to represent the probability that Boolean computation c produces true. The

== symbol represents equality for rational numbers.

The proof proceeds by using tactics to transform the goal or hypotheses until I get a goal that is

trivial and can be automatically discharged. I use intuition to introduce all variables, then I un-

fold the de୮ୢnition of OTP to replace D(OTP x)with the body de୮ୢned in Listing 5. r_ident_r is

an FCF tactic that uses Coq’s rewrite tactic along with a monadic right identity theorem to replace

D({0,1}^c)with D(a <-$ {0,1}^c; ret a). This transformation puts the goal into a form

where we can apply the distribution isomorphism theorem (Theorem 4 in Chapter 4) to complete

the proof. At a high level, this theorem allows us to prove that two distributions are equivalent by

showing that there is a bijection on the supports of the distributions that preserves the probabil-

ity mass of the corresponding values. The theorem takes a bijection and its inverse, and we supply

the involution (BVxor c x) for both. When this theorem is applied, several simpler goals are pro-

duced. These goals are either trivial equalities or simple facts about the BVxor function (e.g. com-

mutativity, identity) which can be discharged by the specialized xorTac tactic.

Theorem OTP_eq_Rnd:
forall (x y : Bvector c),

D (OTP x) y == D ({0, 1}^c) y.

intuition. unfold OTP.
r_ident_r.
eapply (dist_iso (BVxor c x) (BVxor c x));
intuition; xorTac.

Qed.

Listing 6: Example Proof: Equivalence of One-Time Pad

Once I have proven the theorem in Listing 6 I can use this theorem to rewrite anything that uni-

୮ୢes with either expression. I can also use other theorems and tactics to focus on some location in the

program and perform this rewrite at that location. The ability to perform such rewrites provides the

basis for completing proofs composed of sequences of games.

The language of FCF also includes a (Repeat c P) statement that repeats computation c un-

16



til a decidable predicate P holds on the result. This is equivalent to conditioning the distribution

corresponding to c on the event P.

A simple program that uses Repeat to sample uniformly-distributed natural numbers in [0, 𝑛)

is shown in Listing 7. RndNat_h is a helper function that samples a natural number with the appro-

priate number of bits. In this function, lognat computes the base-2 logarithm (rounded down) of

the argument and bvToNat converts a bit vector to the corresponding natural number. The RndNat

procedure repeats RndNat_h until the result is less than n, as determined by the function ltNat. It

is possible to show that this procedure corresponds with a uniform distribution on numbers in the

speci୮ୢed range, and this theorem is present in the FCF library.

Definition RndNat_h(n : nat) :=
v <-$ {0,1} ^ (lognat n); ret (bvToNat v).

Definition RndNat(n : nat) :=
(Repeat (RndNat_h n) (fun x => (ltNat x n))).

Listing 7: Example Program: RandomNatural Numbers

3.2.3 Pছঘঐছঊখ Lঘঐ঒ঌ

Many proofs can be completed using the theory of distributions alone, but it can be di୭୮ୢcult to

complete a proof involving state or looping behavior in this manner. To assist with such proofs,

FCF includes a program logic in the style of EasyCrypt. The program logic allows relational judg-

ments on pairs of probabilistic programs. The syntax of a judgment is (comp_spec P c1 c2),

indicating that relational predicate P holds (probabilistically) on the values produced by programs

c1 and c2. A more detailed description of the program logic is provided in Chapter 4.

Listings 8 and 9 illustrate the program logic using the compMap construction, which maps a com-

putation over a list. This function uses Coq’s Fixpoint to destruct the list and apply the computa-

tion to the ୮ୢrst element, then recursively call compMap on the remainder of the list.

17



The compMap_rel theorem describes a relational program logic judgment for this construction.

This judgment requires that some predicate P1 holds on all corresponding pairs of values in lists lsa

and lsb (de୮ୢned using Coq’s Forall2). Additionally, for any pair of values a and b on which P1

holds, the relation P2must hold on (c1 a) and (c2 b). Then the theorem states that P2 holds on

all corresponding pairs of values in the lists resulting from the map operation.

The relational program logic is a powerful tool for completing proofs of security involving se-

quences of games. In such a proof, it is necessary to prove that some relation holds on each adjacent

pair of games in the sequence. The program logic provides a general mechanism for proving that

arbitrary relations hold on subprograms appearing within those games. These judgments can be

combined to prove judgments on the entire games, including judgments that correspond to equal-

ity, inequality, and closeness of probability distributions.

The compMap_fission theorem is another judgment on compMap describing equivalence of

loop ୮ୢssion. Various forms of this theorem, along with similar theorems for probabilistic fold oper-

ations, are used extensively in the proofs in Chapter 6. This theorem can be proved by induction on

the list using existing program logic facts and tactics.

18



Fixpoint compMap(c : A -> Comp B)(ls : list A) :

Comp (list B) :=

match ls with

| nil => ret nil

| a :: lsa’ =>

b <-$ c a;

lsb’ <-$ compMap c lsa’;

ret (b :: lsb’)

end.

Theorem compMap_fission :

forall (c1 : A -> Comp B)(c2 : B -> Comp C)

(ls : list A),

comp_spec eq

(compMap (fun a => b <-$ c1 a; c2 b) ls)

(ls’ <-$ compMap c1 ls; compMap c2 ls’).

Listing 8: ProbabilisticMap and Fission Equivalence

Theorem compMap_rel :

forall (P1 : A -> B -> Prop)(P2 : C -> D -> Prop)

(lsa : list A)(lsb : list B)

(c1 : A -> Comp C)(c2 : B -> Comp D),

Forall2 P1 lsa lsb ->

(forall a b, In a lsa -> In b lsb ->

P1 a b -> comp_spec P2 (c1 a) (c2 b)) ->

comp_spec (Forall2 P2)

(compMap c1 lsa)

(compMap c2 lsb).

Listing 9: Relational Judgment on ProbabilisticMap

3.2.4 Cঘখঙঞঝঊঝ঒ঘগজ ঠ঒ঝ঑Oছঊঌক঎ Aঌঌ঎জজ

It is common for a security de୮ୢnition to include some notion of state. For example, the adversary

may comprise multiple procedures that are allowed to share state. In this case, the state can be passed

explicitly or using a state monad. This solution is not su୭୮ୢcient in all circumstances, though. Con-

sider a security de୮ୢnition in which an adversary is allowed to query an oracle that must maintain

state across calls to the oracle. If the state monad was used, then the adversary would be able to in-

spect or modify the state of the oracle. To address this issue, FCF includes a type for a procedure that

has access to a stateful oracle. This type is given a semantics that allows the procedure to query the

oracle without being able to view or modify the state of the oracle. Using this type, I can create ad-

versary/oracle interactions such as the one shown in listing 10. This game, which is part of an oracle-

based semantic security de୮ୢnition, chooses an encryption key at random and then creates an oracle

19



that uses that key to encrypt any plaintexts it receives. The adversary procedure A has the type of a

procedure with oracle access. When A is applied to an oracle and an initial state, a coercion invokes

the semantics associated with the type of A, producing an interaction that prevents A from accessing

the state of the oracle. The result is a computation that produces a pair: the ୮ୢrst value is the output

of the adversary, and the second value is the ୮ୢnal state of the oracle.

Definition IND_CPA_SecretKey_O_G0 :=
key <-$ KeyGen ;
[b, _] <-$2 A (EncryptOracle key) tt;
ret b.

Listing 10: Example Adversary/Oracle Interaction

3.2.5 Tঊঌঝ঒ঌজ

The most commonly used theorems in the theory of distributions and the program logic have tactics

associated with them that make them easier to apply. In many cases, a theorem related to distribu-

tions has a corresponding theorem in the program logic, and a single tactic can be used to apply the

appropriate form of the theorem based on the current goal. For example, the comp_skip tactic will

apply the distribution isomorphism theorem introduced in Listing 6, using the identity function as

the bijection. This tactic has the e୭fect of simply removing identical pairs of statements at the begin-

ning of the games, and this tactic can be successfully invoked when the goal is either an (in)equality

of distributions or a program logic judgment.

All of the primitive tactics like comp_skip apply to the beginning of the games. A tactical called

comp_at can be invoked to apply any primitive tactic at an arbitrary position within a game. There

are also slightly more sophisticated tactics, such as inline_firstwhich extracts the ୮ୢrst statement

in a deeply nested computation, comp_simpwhich simpli୮ୢes programs, and dist_computewhich

performs case splits and other manipulations in order to compute a numeric probability value corre-

sponding to a simple program.

20



3.2.6 Pছঘঐছঊখখ঒গঐ L঒ঋছঊছঢ

FCF includes a library that includes several standard programming constructs and their associated

theory. This library includes the compMap operation seen in Listing 8 as well as other list operations

such as probabilistic fold and summation. This package uses the program logic extensively, and

many of the theorems take a speci୮ୢcation on a pair of computations as an argument, and produce

a speci୮ୢcation on the result of folding/mapping those computations over a list. The package also

contains theorems about typical list and loop manipulations such as appending, ୯୳attening, fusion

and order permutation.

The library also includes additional constructed sampling routines such as sampling from lists,

groups, and arbitrary Bernoulli distributions with rational success probability. These sampling rou-

tines are all computations based on the Rnd statement provided by the language, and each routine is

accompanied by a theory establishing that the resulting distribution is correct.

3.2.7 Oঙ঎ছঊঝ঒ঘগঊক S঎খঊগঝ঒ঌজ

FCF also provides a conventional operational semantics for its language in order to allow extraction

of OCaml programs from FCF constructions as well as relating FCF models to implementations.

This operational semantics is proven equivalent to the denotational semantics used to reason about

programs in security proofs. More information about this alternate semantics is provided in Section

4.5, and I show how to reason about implementations in Chapter 7.

3.3 Cছঢঙঝঘঐছঊঙ঑঒ঌ Aছঐঞখ঎গঝজ ঒গ FCF

This section contains some examples to describe how cryptographic arguments are completed in

FCF. All of the examples in this section are used in proofs in later chapters.

21



Listing 11 contains the de୮ୢnition of a non-adaptively secure pseudorandom function (PRF). In

this de୮ୢnition, the adversary de୮ୢned by procedures A1 and A2 attempts to distinguish two “worlds.”

In both worlds, the adversary produces a list of values (lsD) which are provided to some function,

and the corresponding list of outputs (lsR) is given back to the adversary. The adversary may also

share arbitrary state (s_A) between these two procedures. In the ୮ୢrst world, the outputs are pro-

duced by some function f, whereas in the second world these outputs are produced by a random

function. This random function is modeled as a stateful oracle called randomFunc that keeps track

of previous inputs and outputs using a list. The oracleMap function is used to map this oracle over

the list lsD, and nil is the initial state of the oracle. The second adversary procedure takes the re-

sulting list of function outputs and the state, and produces a bit. This de୮ୢnition ends by de୮ୢning

the advantage of the adversary as the distance between the probability that the adversary produces

true in these two games. If f is a PRF, then this advantage should be “small.”

Definition PRF_NA_G_A : Comp bool :=
[lsD, s_A] <-$2 A1;
lsR <-$ (k <-$ RndKey; ret (map (f k) lsD));
A2 s_A lsR.

Definition PRF_NA_G_B : Comp bool :=
[lsD, s_A] <-$2 A1;
[lsR, _] <-$2 oracleMap randomFunc nil lsD;
A2 s_A lsR.

Definition PRF_NA_Advantage :=
| Pr[PRF_NA_G_A] - Pr[PRF_NA_G_B] |.

Listing 11: Non-Adaptively Secure Pseudorandom Function

The security de୮ୢnition in Listing 11 can be used as either the end goal of a proof (in order to

show that some function is a PRF) or an assumption (to assume that some function is a PRF). I

can use this de୮ୢnition as an assumption to unify some game with PRF_NA_G_A and another with

PRF_NA_G_B and replace the distance between these two games with the corresponding PRF_NA_Advantage.

This technique e୭fectively allows us to rewrite one game with another while adding a “small” value

to the bounds produced by the proof.

22



Listing 12 contains the structure of a hybrid argument 33,32 that bounds the probability that an ad-

versary can distinguish two distributions when given a list of samples from one of the distributions

(ListHybrid_Advantage). The resulting bound is a function of the advantage of the adversary

when attempting to distinguish these two distributions given only a single sample (DistSingle_Adv).

If the adversary is unlikely to distinguish these distributions when given a single sample, then the ad-

versary is still unlikely to distinguish these distributions when given polynomially many samples. To

make this argument more general, the adversary is able to in୯୳uence the distribution by providing a

value (in the case of DistSingle_G) or a list of values (in the case of ListHybrid_G).

In this listing, B1 and B2 (omitted) compose a nat-indexed family of adversaries constructed from

A1 and A2, where the ith adversary attempts to distinguish the single sample implied by the ith

distribution in the appropriate hybrid distribution family. In Single_impl_ListHybrid_sum,

the bound is given as a sum over the advantages of these adversaries, and maxA is the maximum

size of the list provided by A1. If I include an assumption that a single value (maxAdvantage)

bounds the advantage of each of these adversaries, then we can derive the simpler result of Sin-

gle_impl_ListHybrid.

Definition DistSingle_G(c : A -> Comp B) :=
[a, s_A] <-$2 A1;
b <-$ c a;
A2 s_A b.

Definition DistSingle_Adv :=
| Pr[DistSingle_G c1] - Pr[DistSingle_G c2] |.

Definition ListHybrid_G (c : A -> Comp B) :=
[lsA, s_A] <-$2 A1;
lsB <-$ foreach (x in lsA) (c x);
A2 s_A lsB.

Definition ListHybrid_Adv :=
| Pr[ListHybrid_G c1] - Pr[ListHybrid_G c2] |.

Theorem Single_impl_ListHybrid_sum :
ListHybrid_Adv <=

sumList (forNats maxA)
(fun i => DistSingle_Adv c1 c2 (B1 i) B2).

Hypothesis maxAdvantage_correct :
forall i,

DistSingle_Adv c1 c2 (B1 i) B2 <= maxAdvantage
.

Theorem Single_impl_ListHybrid :
ListHybrid_Adv <= maxA * maxAdvantage.

Listing 12: AHybrid Argument on Lists

Note that PRF_NA_Advantage uni୮ୢes with DistSingle_Adv. So if I assume that some func-

tion is a PRF, then I can use the hybrid argument above to conclude that the function is indistin-

23



guishable from a random function even when the adversary provides a list of lists of inputs, and

receives the result of the PRF mapped over each list (using a di୭ferent key for each list).

3.4 Cঘখঙঊছ঒জঘগ

In this section, I describe the degree to which FCF and similar systems satisfy the design goals de-

scribed in Section 3.1. Table 3.1 assigns an informal score to each system for all the design attributes

in Section 3.1. For any attribute, a system is scored between 1 and 5, where 1 indicates that the sys-

tem does not satisfy the goal (or satis୮ୢes it poorly), and 5 indicates it satis୮ୢes the goal very well. Of

course, these scores are intended to be relative, and are only used to compare these systems with each

other.

FCF EasyCrypt CertiCrypt CryptoVerif F*
Familiarity 4 4 2 4 2
Automation 2 3 2 5 3

Trustworthiness 5 4 5 4 3
Expressivity 4 5 5 2 3
Extensibility 5 3 4 2 3

Concrete Security 5 5 5 5 2
Abstraction 5 4 4 2 2

Implementation 5 4 1 4 4

Table 3.1: Comparison ofMechanized Cryptography Systems

FCF scores well for all attributes except forAutomation, which is reasonable considering many of

the other frameworks were designed to maximize the e୭fect of automation. In the remainder of this

section, I will explain the scores in Table 3.1. For each attribute, I will start with the highest-scoring

system and then describe the others in comparison.

For Familiarity, FCF, EasyCrypt, and CryptoVerif score the highest, and I will describe EasyCrypt

୮ୢrst. EasyCrypt is a standalone system, giving the designers complete freedom over the language

24



used to express constructions and security de୮ୢnitions. This language is very natural, and (from

personal observation) cryptographers have no trouble understanding de୮ୢnitions in this language.

The language of FCF was inspired by the language of EasyCrypt and is similarly familiar, though

the language of FCF is in୯୳uenced by the fact that it is embedded in Coq. Coq’s notation system is

used extensively by FCF to make de୮ୢnitions more familiar, but a cryptographer reading these def-

initions will need to learn a few notations in order to understand them. FCF is more familiar than

EasyCrypt in its semantics, though. The semantics of FCF assigns a probability distribution to each

program using standard set-theoretic notions of probability distributions. In contrast, EasyCrypt

is based on a distribution transformer semantics that is much harder for a cryptographer to under-

stand. CryptoVerif is similar to EasyCrypt in that the language is very familiar, but the semantics

(based on probabilistic process calculus) is not. A minor issue with CertiCrypt is the fact that read-

ing and understanding security de୮ୢnitions and constructions is somewhat challenging. The core

language is similar to that of EasyCrypt, but the deep embedding of this language into Coq requires

a large amount of additional syntax to extend the language with new types and operations. The

CertiCrypt semantics (which is very similar to the EasyCrypt semantics) is also unfamiliar to cryp-

tographers. Many aspects of F* are unfamiliar to cryptographers, especially the notion of re୮ୢnement

types. The pervasive use of ideal interfaces in F* proofs also forces many cryptographers into an un-

familiar (though easily understandable) style of cryptographic proof.

The system with the highest level ofAutomation is CryptoVerif, which can automatically prove

equivalences between intermediate games as well as produce an appropriate sequence of games. But

it is important to note that CryptoVerif is not a general-purpose system, and this automation only

works due to strict limitations on the types of proof that CryptoVerif is able to consider. EasyCrypt

and F* can discharge many goals automatically via their integration with SMT solvers, but the au-

tomation in these tools is still very far from the fully-automatic nature of CryptoVerif. The SMT

solvers in EasyCrypt are used to solve very simply goals involving logical formulae, but these goals

25



must be produced from a higher-level goal (e.g. the equivalence of two games) manually by using

tactics in EasyCrypt. The process is similar in F*, though logical goals are produced by constructing

programs in a certain way to give hints to the solver (rather than explicitly applying tactics). Easy-

Crypt and F* are more general than CryptoVerif, and they notably include looping constructs that

are not provided by CryptoVerif. So in order to reason about the behavior of programs in EasyCrypt

or F*, it is necessary to determine an appropriate loop invariant or induction hypothesis, which is

very hard to do automatically. CertiCrypt and FCF have the lowest level automation because they

do not use SMT solvers. Though Coq provides a signi୮ୢcant level of proof automation through its

tactic language and other features. Through example proofs in Chapters 5 and 6, I demonstrate that

the level of automation provided in FCF is su୭୮ୢcient for completing non-trivial proofs with a rea-

sonable about of e୭fort.

CertiCrypt and FCF are the only fully foundational proof frameworks, and therefore they have

the most Trॸtworthinॶs. These frameworks are embedded in Coq, which has a relatively small

trusted computing base (TCB) by design, and is used by thousands of people for many di୭ferent

purposes. EasyCrypt and CryptoVerif are standalone tools, and should be considered less trustwor-

thy since they have larger TCBs and fewer users (meaning bugs resulting in unsoundness are less

likely to be located). Still it is important to note that the logical frameworks of EasyCrypt and Cryp-

toVerif are simpler than that of Coq, which may increase their trustworthiness in some situations.

F* is similar to EasyCrypt and CryptoVerif in that it is a standalone tool with a large TCB. An addi-

tional issue with F* is that it cannot perform all of the probabilistic reasoning required to complete

a cryptographic proof. So some facts are simply admitted, and it is necessary to inspect these facts in

order to trust the proof.

EasyCrypt and CertiCrypt are the most expressive systems. These tools are based on a Turing-

complete language that can be used to model any cryptographic scheme or security de୮ୢnition. FCF

is similarly expressive, except the language is not Turing-complete. As a result, there may be some

26



cryptographic construction or de୮ୢnition that cannot be modeled precisely in FCF. The language

of CryptoVerif has no loops, and the security de୮ୢnitions are limited to secrecy and authenticity.

These restrictions severely limit the proofs that can be expressed in CryptoVerif. F* is based on a

Turing-complete language which allows the modeling of any cryptographic construction, but the

lack of probabilistic reasoning in F* restricts the security de୮ୢnitions and proofs that can be precisely

expressed.

FCF was designed to maximize trustworthy Extensibility, and it supports the direct incorporation

of existing Coq libraries and theory. CertiCrypt can be extended in a way that is equally trustwor-

thy, but the extension su୭fers from issues related to syntax and familiarity described earlier. Easy-

Crypt provides a mechanism to add new types and operations along with a set of axioms that de-

scribe the behavior of those operations. This mechanism is not trustworthy, however, since these

axioms must be inspected in order to ensure that they are reasonable and sound. Also, EasyCrypt

cannot be extended with new theory about existing programming language constructs in a trustwor-

thy manner, whereas the theory of FCF and CertiCrypt can be extended by simply proving theorems

in Coq. F* can be extended by de୮ୢning a new type describing the behavior of some operation. Sim-

ilar to EasyCrypt, it is necessary to inspect these types, and the theory of F* cannot be extended in a

trustworthy way. CryptoVerif can be extended to support new types, operations, and security de୮ୢni-

tions, but these objects must be developed in a particular way so that CryptoVeriૄ’s automation can

take advantage of them. As a result, extending CryptoVerif is signi୮ୢcantly harder compared to the

other frameworks.

All systems provide Concrete Security, though the claims are signi୮ୢcantly weaker in F* because

this system is limited in the sorts of probabilistic reasoning it is capable of performing. As a result, a

concrete security claim in F* may include an expression describing the behavior of an ideal interface,

whereas this expression in other frameworks would be a more precise numerical expression.

FCF takes full advantage of the abstraction mechanisms in Coq to support reusability of de୮ୢni-

27



tions, code, and proofs. These mechanisms include higher-order functions, sections, modules, and

type classes. CertiCrypt also supports these abstraction mechanisms, though the embedding style

of CertiCrypt makes it slightly more di୭୮ୢcult to leverage them. EasyCrypt is based on a ୮ୢrst order

language, but it has a module system that is inspired by the module system of Caml and Coq. This

system provides a form of abstraction that is more limited than the systems available in Coq, but it is

speci୮ୢcally tailored to problem of developing cryptographic proofs. CryptoVerif and F* are also ୮ୢrst

order languages, and they provide relatively limited support for reuse through abstraction.

FCF, EasyCrypt, CryptoVerif, and F* have been used to reason about the Implementation of cryp-

tographic systems. At present, only FCF has been used to produce a complete, end-to-end proof of

security and correctness for a cryptographic implementation. EasyCrypt and CryptoVerif have been

used to verify implementations, but the resulting proofs contain small gaps. One of these gaps is

that it is necessary to trust that the semantics used to reason about the implementation is compatible

with the semantics used to reason about the cryptographic properties of the system. F* is derived

from the F# programming language, so reasoning about implementations is very natural, but it is

impossible to produce an end-to-end proof of an implementation due to limitations in the crypto-

graphic reasoning ability of F*. CertiCrypt has not been used to reason about implementations of

systems, though this is mostly due to the fact that the developers focused their attention on Easy-

Crypt instead. With some additional e୭fort, CertiCrypt could be just as e୭fective at reasoning about

implementations as EasyCrypt or FCF.

3.5 Cঘগঌকঞজ঒ঘগ

This chapter informally introduced FCF and some criteria against which FCF and similar tools

should be evaluated. I also provided a brief assessment of FCF in comparison to other signi୮ୢcant

cryptographic proof frameworks. Throughout the rest of this paper, I give justi୮ୢcation for the as-

28



sessment of FCF given in Section 3.4. In Chapter 4, I provide a more detailed technical description.

Chapter 5 contains several complete example proofs that demonstrate how FCF is used in practice.

29



4
Technical Description

The previous chapters described cryptographic proofs and gave a brief introduction to developing

cryptographic proofs in FCF. Chapter 5 provides several examples of complete proofs in FCF, but

୮ୢrst I will describe the technical details of the framework.

FCF provides a common probabilistic programming language (Section 4.1) for describing crypto-

graphic constructions, security de୮ୢnitions, and problems that are assumed to be hard. Then a deno-

tational semantics (Section 4.1) allows reasoning about the probability distributions that correspond

30



to programs in this language. This semantics assigns a numeric value to an event in a probability dis-

tribution, and it also allows one to conclude that two distributions are equivalent or are related in

other interesting ways.

It can be cumbersome to work directly in the semantics, so FCF provides a theory of distribu-

tions (Section 4.2) that can be used to prove that distributions are related by equality, inequality

or “closeness.” A program logic (Section 4.3) is also provided to ease the development of proofs in-

volving state or looping behavior. As described in Chapter 3, the framework provides a library of

tactics and a library of common program elements with associated theory. The equational theory,

program logic, tactics, and programming library greatly simplify proof development, yet they are all

derived from the semantics of the language, and using them to complete a proof does not reduce the

trustworthiness of the proof.

By combining all of the components described above, a developer can produce a proof relating

the probability that some adversary defeats the scheme to the probability that some other adversary

is able to solve a problem that is assumed to be hard. This is a result in the concrete setting, in which

probability values are given as expressions, and certain problems are assumed to be hard for particu-

lar constructed adversaries. In such a result, it may be necessary to inspect an expression describing

a probability value to ensure it is su୭୮ୢciently “small,” or to inspect a procedure to ensure it is in the

correct complexity class. FCF provides additional facilities to obtain more traditional asymptotic

results, in which these procedures and expressions do not require inspection. A set of asymptotic

de୮ୢnitions (Section 4.4) allows conclusions such as “this probability is negligible” or “this procedure

executes a polynomial number of queries.” In order to apply an assumption about a hard problem,

it may be necessary to prove that some procedure is e୭୮ୢcient in some sense. So FCF provides an ex-

tensible notion of e୭୮ୢciency (Section 4.4.1) and a characterization of non-uniform polynomial time

Turing machines.

31



Inductive Comp : Set -> Type :=
| Ret : forall {A : Set}

{H: EqDec A}, A -> Comp A
| Bind : forall {A B : Set}, Comp B

-> (B -> Comp A) -> Comp A
| Rnd : forall n, Comp (Bvector n)
| Repeat : forall {A : Set}, Comp A

-> (A -> bool) -> Comp A.

Listing 13: Probabilistic Computation Syntax

Jret 𝑎K =1{𝑎}J𝑥 $← 𝑐; 𝑓 𝑥K =𝜆𝑥. ඉ
𝑏∈supp(J𝑐K)

൭J𝑓 𝑏K 𝑥൮ � ൭J𝑐K 𝑏൮

J{0, 1}𝑛K =𝜆𝑥. 2 �𝑛

JRepeat 𝑐 𝑃 K =𝜆𝑥.(1𝑃 𝑥) � (J𝑐K 𝑥)�

ฟඉ
𝑏∈𝑃

(J𝑐K 𝑏)
ภ

−1

Figure 4.1: Semantics of Probabilistic Computations

4.1 Pছঘঋঊঋ঒ক঒জঝ঒ঌ Pছঘঐছঊখজ

Probabilistic programs are speci୮ୢed using Gallina, the purely functional programming language of

Coq, extended with a computational monad in the spirit of Ramsey and Pfe୭fer41, that supports

drawing uniformly random bit vectors. The syntax of the language is de୮ୢned by an inductive type

called Comp and is shown in Listing 13. At a high-level, Comp is an embedded domain-speci୮ୢc lan-

guage that inherits the host language Gallina, and extends it with operations for generating and

working with random bits.

The most notable primitive operation is (Rnd n), which produces 𝑛 uniformly random bits.

The (Repeat c P) operation repeats a computation c until the decidable predicate P holds on the

value returned. The operations Bind and Ret are the standard monadic constructors, and allow

the construction of sequences of computations, and computations from arbitrary Gallina terms

and functions, respectively. However, note that the Ret constructor requires a proof of decidable

equality for the underlying return type, which is necessary to provide a computational semantics as

seen later in this section. In the remainder of this paper, I will use a more natural notation for these

constructors: {0, 1}𝑛 is equivalent to (Rnd n), 𝑥 $← 𝑐; 𝑓 𝑥 is the same as (Bind c f), and ret e

32



is (Ret _ e). The framework includes an ASCII form of this notation as seen in the examples in

Chapter 3. In the case of Ret, the notation serves to hide the proof of decidable equality, which is

irrelevant to the programmer and is usually constructed automatically by proof search.

FCF uses a (mostly) shallow embedding, in which functions in the object language are realized

using functions in the metalanguage. In contrast, CertiCrypt uses a deep embedding, in which the

data type describing the object language includes constructs for specifying and calling functions, as

well as all of the primitives such as bit-vectors and xor.

I have found that there are several key bene୮ୢts to shallow embedding. The primary bene୮ୢt is

that FCF immediately gains all of the capability of the metalanguage, including (in the case of Coq)

dependent types, higher-order functions, modules, etc. Another bene୮ୢt is that it is very simple to

include any necessary theory in a security proof, and all of the theory that has been developed in the

proof assistant can be directly utilized. One bene୮ୢt that is speci୮ୢc to Coq (and other proof assistants

with this property) is that Gallina functions are necessarily terminating, and Coq provides some

fairly complex mechanisms for proving that a function terminates. By combining this restriction on

functions with additional restrictions on Repeat, FCF can ensure that a computation (eventually)

terminates, and that this computation corresponds with a distribution in which the total probability

mass is 1.

On the other hand, the shallow embedding approach does have some drawbacks. The main

drawback is that a Gallina function is opaque; Coq can only reason about a Gallina function based

on its input/output behavior. The most signi୮ୢcant e୭fect of this limitation is that it is not possible

to directly reason about the computational complexity of a Gallina function. This issue is addressed

in Section 4.4.1.

The denotational semantics of a probabilistic computation is shown in Figure 4.1. The denota-

tion of a term of type Comp A is a function in 𝐴 → ℚ which should be interpreted as the prob-

ability mass function of a distribution on A. In FCF, all distributions are discrete and have ୮ୢnite

33



support. In Figure 4.1, 1𝑆 is the indicator function for set 𝑆 . So the denotation of (ret a) is a

function that returns 1 when the argument is de୮ୢnitionally equal to 𝑎, and 0 otherwise. We can

view the denotation of 𝑥 $← 𝑐; 𝑓 𝑥 as a marginal probability of the joint distribution formed by 𝑐

and 𝑓 . We know the probability of all events in 𝑐, but we only know the probability of events in 𝑓

conditioned on events in 𝑐, so we can compute the probability of any event in this marginal distri-

bution using the law of total probability. The fact that random bits are uniform and independent

is encoded in the denotation of {0, 1}𝑛, which is a function that ignores the argument and returns

the probability that any 𝑛-bit value is equal to a randomly chosen 𝑛-bit value. The probability that

(Repeat 𝑐 𝑃) produces 𝑥 is the conditional probability of 𝑥 given 𝑃 in 𝑐—which is equivalent to

the function shown in Figure 4.1.

It is important to note that this language is purely functional, but the monadic style gives pro-

grams an imperative appearance. This appearance supports the Familiarity design goal since crypto-

graphic de୮ୢnitions and games are typically written in an imperative style.

It is sometimes necessary to include some state in a cryptographic de୮ୢnition or proof. This can

be easily accomplished by layering a state monad on top of Comp. However, this simple approach

does not allow the development of de୮ୢnitions in which an adversary has access to an oracle that

must maintain some hidden state across multiple interactions with the adversary. The de୮ୢnition

could not simply pass the state to the adversary, because then the adversary could inspect or mod-

ify it. So FCF provides an extension to Comp for probabilistic procedures with access to a stateful

oracle. The syntax of this extended language (Listing 14) is de୮ୢned in another inductive type called

OracleComp, where (OracleComp A B C) is a procedure that returns a value of type C, and has

access to an oracle that takes a value of type A and returns a value of type B.

The OC_Query constructor is used to query the oracle, and OC_Run is used to run some program

under a di୭ferent oracle that is allowed to access the current oracle. The OC_Bind and OC_Ret con-

structors are used for sequencing and for promoting terms into the language, as usual. In the rest

34



Inductive OracleComp : Set -> Set -> Set -> Type :=
| OC_Query : forall (A B : Set), A -> OracleComp A B B
| OC_Run : forall (A B C A’ B’ S : Set), EqDec S -> EqDec B -> EqDec A ->

OracleComp A B C -> S -> (S -> A -> OracleComp A’ B’ (B * S)) ->
OracleComp A’ B’ (C * S)

| OC_Ret : forall A B C, Comp C -> OracleComp A B C
| OC_Bind : forall A B C C’, OracleComp A B C ->

(C -> OracleComp A B C’) -> OracleComp A B C’.

Listing 14: Computation with Oracle Access Syntax

of this paper, I overload the sequencing and ret notation in order to use them for OracleComp as

well as Comp. I use query and run, omitting the additional types and decidable equality proofs, as

notation for the corresponding constructors of OracleComp.

Jquery 𝑎K = 𝜆𝑜 𝑠.(𝑜 𝑠 𝑎)Jrun 𝑐ດ 𝑠ດ 𝑜ດK = 𝜆𝑜 𝑠.J𝑐ດ(𝜆𝑥 𝑦.J(𝑜ດ(𝑓𝑠𝑡 𝑥) 𝑦) 𝑜 (𝑠𝑛𝑑 𝑥)K) (𝑠ດ, 𝑠)K
Jret 𝑐K = 𝜆𝑜 𝑠.𝑥 $← 𝑐; ret (𝑥, 𝑠)

J𝑥 $← 𝑐; 𝑓 𝑥K = 𝜆𝑜 𝑠.[𝑥, 𝑠ດ] $← J𝑐 𝑜 𝑠K; J(𝑓 𝑥) 𝑜 𝑠ດK
Figure 4.2: Semantics of Computations with Oracle Access

The denotation of an OracleComp is a function from an oracle and an oracle state to a Comp that

returns a pair containing the value provided by the OracleComp and the ୮ୢnal state of the oracle.

The type of an oracle that takes an A and returns a B is (S -> A -> Comp(B * S)) for some type

Swhich holds the state of the oracle. The denotational semantics is shown in Figure 4.2.

4.2 T঑঎ঘছঢ ঘএ D঒জঝছ঒ঋঞঝ঒ঘগজ

A common goal in a security proof is to compare two distributions with respect to some particular

value (or pair of values) in the distributions. To assist with such goals, FCF provides an (in)equational

theory for distributions. This theory contains facts that can be used to show that two probability

35



values are equal, that one is less than another, or that the distance between them is bounded by some

value. For simplicity of notation, equality is overloaded in the statements below in order to apply to

both numeric values and distributions. When I say that two distributions (represented by probabil-

ity mass functions) are equal, as in 𝐷1 = 𝐷2, I mean that the functions are extensionally equal, that

is ∀𝑥, (𝐷1 𝑥) = (𝐷2 𝑥).

؄eorem 1 (Monad Laws).

J𝑎 $← ret 𝑏; 𝑓 𝑎K = J(𝑓 𝑏)K J𝑎 $← 𝑐; ret 𝑎K = J𝑐K
J𝑎 $← (𝑏 $← 𝑐1; 𝑐2 𝑏); 𝑐3 𝑎K = J𝑏 $← 𝑐1; 𝑎 $← 𝑐2 𝑏; 𝑐3 𝑎K

؄eorem 2 (Commutativity).

J𝑎 $← 𝑐1; 𝑏 $← 𝑐2; 𝑐3 𝑎 𝑏K = J𝑏 $← 𝑐2; 𝑎 $← 𝑐1; 𝑐3 𝑎 𝑏K
؄eorem 3 (Distribution Irrelevance). For well-formed computation c,

൭∀𝑥 ∈ 𝑠𝑢𝑝𝑝(J𝑐K), J𝑓 𝑥K𝑦 = 𝑣൮ ⇒ J𝑎 $← 𝑐; 𝑓 𝑎K𝑦 = 𝑣

؄eorem 4 (Distribution Isomorphism). For any bijection f,

∀𝑥 ∈ 𝑠𝑢𝑝𝑝(J𝑐2K), J𝑐1K(𝑓 𝑥) = J𝑐2K𝑥

∧ ∀𝑥 ∈ 𝑠𝑢𝑝𝑝(J𝑐2K), J𝑓1 (𝑓 𝑥)K 𝑣1 = J𝑓2 𝑥K𝑣2

⇒ J𝑎 $← 𝑐1; 𝑓1 𝑎K 𝑣1 = J𝑎 $← 𝑐2; 𝑓2 𝑎K 𝑣2

36



؄eorem 5 (Repeat Equivalence).

𝑣1 ∈ 𝑠𝑢𝑝𝑝(J𝑐1K) ∧ 𝑃1 𝑣1 = 𝑃2 𝑣2 = 𝑡𝑟𝑢𝑒

∧ J𝑐1K𝑣1 = J𝑐2K𝑣2 ∧ ඉ
𝑎∈𝑃1

J𝑐1K𝑎 = ඉ
𝑎∈𝑃2

J𝑐2K𝑎

⇒ J𝑅𝑒𝑝𝑒𝑎𝑡 𝑐1 𝑃1K𝑣1 = J𝑅𝑒𝑝𝑒𝑎𝑡 𝑐2 𝑃2K𝑣2

؄eorem 6 (Identical Until Bad).

J𝑎 $← 𝑐1; ret (𝐵 𝑎)K = J𝑎 $← 𝑐2; ret (𝐵 𝑎)K∧

J𝑎 $← 𝑐1; ret (𝑃 𝑎, 𝐵 𝑎)K(𝑥, false) = J𝑎 $← 𝑐2; ret (𝑃 𝑎, 𝐵 𝑎)K(𝑥, false) ⇒

j J𝑎 $← 𝑐1; ret (𝑃 𝑎)K 𝑥 � J𝑎 $← 𝑐2; ret (𝑃 𝑎)K 𝑥 j ≤ J𝑎 $← 𝑐1; ret (𝐵 𝑎)K true
The meaning and utility of many of the above theorems is direct (such as the standard monad

properties in Theorem 1), but others require some explanation. Theorem 3 considers a situation

in which the probability of some event 𝑦 in J𝑓 𝑥K is the same for all 𝑥 produced by computation

𝑐. Then the distribution J𝑐K is irrelevant, and it can be ignored. This theorem only applies to well-

formed computations: A well-formed computation is one that terminates with probability 1, and

therefore corresponds to a valid probability distribution.

Theorem 4 is a powerful theorem that corresponds to the common informal argument that two

random variables “have the same distribution.” More formally, assume distributions J𝑐1K and J𝑐2K
assign equal probability to any pair of events (𝑓 𝑥) and 𝑥 for some bijection 𝑓 . Then a pair of se-

quences beginning with 𝑐1 and 𝑐2 are denotationally equivalent as long as the second computations

in the sequences are equivalent when conditioned on (𝑓 𝑥) and 𝑥. A special case of this theorem is

when 𝑓 is the identity function, which allows us to simply “skip” over two semantically equivalent

computations at the beginning of a sequence.

37



Theorem 5 is a simple rule that can be used to show a form of equivalence between a pair of Re-

peat statements. This theorem assumes that the underlying computations are equivalent w.r.t. a

pair of values 𝑣1 and 𝑣2, and the events that cause the Repeat statements to terminate have the

same probability mass. Then the theorem states that the repeat statements are equivalent w.r.t. the

pair of values 𝑣1 and 𝑣2.

Theorem 6, also known as the “Fundamental Lemma” 15, is typically used to bound the distance

between two games by the probability of some unlikely event. Computations 𝑐1 and 𝑐2 produce

both a value of interest and an indication of whether some “bad” event happened. We use (decid-

able) predicate 𝐵 to extract whether the bad event occurred, and projection 𝑃 to extract the value of

interest. If the probability of the “bad” event occurring in 𝑐1 and 𝑐2 is the same, and if the distribu-

tion of the value of interest is the same in 𝑐1 and 𝑐2 when the bad event does not happen, then the

distance between the probability of the value of interest in 𝑐1 and and 𝑐2 is at most the probability

of the “bad” event occurring.

4.3 Pছঘঐছঊখ Lঘঐ঒ঌ

The ୮ୢnal goal of a cryptographic proof is always some relation on probability distributions, and in

some cases it is possible to complete the proof entirely within the equational theory described in 4.2.

However, when the proof requires reasoning about loops or state, a more expressive theory may be

needed in order to discharge some intermediate goals. For this reason, FCF includes a program logic

that can be used to reason about changes to program state as the program executes. Importantly,

the program logic is related to the theory of probability distributions through completeness and

soundness theorems which allow the developer to derive facts about distributions from program

logic facts, and vice-versa.

The core logic is a Probabilistic Relational Postcondition Logic (PRPL), that behaves like a

38



Hoare logic, except there are no preconditions. The de୮ୢnition of a PRPL speci୮ୢcation is given in

De୮ୢnition 1. In less formal terms, computations 𝑝 and 𝑞 are related by the predicate Φ if both 𝑝 and

𝑞 are marginals of the same joint probability distribution, and Φ holds on all values in the support

of that joint distribution.

Definition 1 (PRPL Speci୮ୢcation).Given 𝑝 : Comp A and 𝑞 : Comp B,

𝑝 ∼ 𝑞{Φ} ⇔
⎛
⎜
⎜
⎜
⎝

∃ (𝑑 ∶ Comp (A * B)), ∀(𝑥, 𝑦) ∈ supp(J𝑑K), Φ 𝑥 𝑦 ∧

J𝑝K = J𝑥 $← 𝑑; ret (fst 𝑥)K ∧ J𝑞K = J𝑥 $← 𝑑; ret (snd 𝑥)K
⎞
⎟
⎟
⎟
⎠

Using the PRPL, it is possible to construct a Probabilistic Relational Hoare Logic (PRHL) which

includes a notion of precondition for functions that return computations as shown in De୮ୢnition

2. The resulting program logic is very similar to the Probabilistic Relational Hoare Logic of Easy-

Crypt9, and it has many of the same properties.

Definition 2 (PRHL Speci୮ୢcation).Given 𝑝 : A -> Comp B and 𝑞 : C -> Comp D, {Ψ}𝑝 ∼

𝑞{Φ} ⇔ ∀𝑎 𝑏, Ψ 𝑎 𝑏 ⇒ (𝑝 𝑎) ∼ (𝑞 𝑏){Φ}.

Several theorems are provided along with the program logic de୮ୢnitions to simplify reasoning

about programs. In order to use the program logic, one only needs to apply the appropriate theo-

rem, so it is not necessary to produce the joint distribution described in the de୮ୢnition of a PRPL

speci୮ୢcation unless a suitable theorem is not provided. Theorems are provided for reasoning about

the basic programming language constructs, interactions between programs and oracles, speci୮ୢ-

cations describing equivalence, and the relationship between the program logic and the theory of

probability distributions. Some of the more interesting program logic theorems are described below.

39



؄eorem 7 (Soundness/Completeness).

𝑝 ∼ 𝑞{𝜆 𝑎 𝑏.𝑎 = 𝑥 ⇔ 𝑏 = 𝑦} ⇔ J𝑝K 𝑥 = J𝑞K 𝑦

𝑝 ∼ 𝑞{𝜆 𝑎 𝑏.𝑎 = 𝑥 ⇒ 𝑏 = 𝑦} ⇔ J𝑝K 𝑥 ≤ J𝑞K 𝑦

؄eorem 8 (Sequence Rule).

𝑝 ∼ 𝑞{Φດ} ⇒ {Φດ}𝑟 ∼ 𝑠{Φ} ⇒ (𝑥 $← 𝑝; 𝑟 𝑥) ∼ (𝑥 $← 𝑞; 𝑠 𝑥){Φ}

؄eorem 9 (Oracle Equivalence).Given an OracleComp 𝑐, and a pair of oracles, 𝑜 and 𝑝 with initial

states 𝑠 and 𝑡,

Φ = 𝜆 𝑥 𝑦.(fst 𝑥) = (fst 𝑦) ∧ 𝑃 (snd 𝑥)(snd 𝑦) ⇒

൭∀𝑎 𝑠ດ 𝑡ດ, 𝑃 𝑠ດ 𝑡ດ ⇒ (𝑜 𝑠ດ 𝑎) ∼ (𝑝 𝑡ດ 𝑎){Φ}൮ ⇒ 𝑃 𝑠 𝑡 ⇒ (J𝑐K 𝑜 𝑠) ∼ (J𝑐K 𝑝 𝑡){Φ}

Theorem 7 relates judgments in the program logic to relations on probability distributions. The-

orem 8 is the relational form of the standard Hoare logic sequence rule, and it supports the decom-

position of program logic judgments. Theorem 9 allows the developer to replace some oracle with

an observationally equivalent oracle. There is also a more general form of this theorem (omitted

for brevity) in which the state of the oracle is allowed to go bad. This more general theorem can be

combined with Theorem 6 to get “identical until bad” results for program/oracle interactions.

4.4 Aজঢখঙঝঘঝ঒ঌ T঑঎ঘছঢ

Using the tools described in the previous sections, it is possible to complete a proof of security in

the concrete setting. That is, the probability that an adversary wins a game is given as an expression

40



which may include some value (or set of values) 𝜂 that we can interpret as the security parameter. To

get a typical asymptotic security result, I must show that this expression, when viewed as a function

of 𝜂, is negligible. To assist with these sorts of conclusions, FCF provides a library of asymptotic

de୮ୢnitions such as De୮ୢnitions 3 and 4. The library also includes theorems that can be used to prove

that functions are polynomial or negligible based on their composition(e.g., the sum of polynomials

is polynomial, the quotient of polynomial and exponential is negligible).

Definition 3 (At Most Polynomial).A function 𝑓 ∶ ℕ → ℕ is at most polynomial i୭f ∃𝑥, 𝑐1, 𝑐2, ∀𝑛, 𝑓(𝑛) ≤

𝑐1 � 𝑛𝑥 + 𝑐2

Definition 4 (Negligible Function).A function 𝑓 ∶ ℕ → ℚ is negligible i୭f ∀𝑐, ∃𝑛, ∀𝑥 > 𝑛, 𝑓(𝑥) <

1/𝑥𝑐

4.4.1 Eএএ঒ঌ঒঎গঝ Pছঘঌ঎঍ঞছ঎জ

A typical asymptotic security property states that a family of cryptographic schemes has some desir-

able property for all e୭୮ୢcient adversaries. So in order to prove and apply these properties, we require

some notion of “e୭୮ୢcient” (families oૄ) procedures. The language of computations used in FCF

does not imply any particular model of computation—it is just a mechanism to specify probability

distributions in a computational manner. Any notion of “e୭୮ୢciency” must ୮ୢrst ୮ୢx a model of com-

putation, and then a complexity class on that model. This notion of e୭୮ୢciency should be ୯୳exible and

extensible so FCF can support several di୭ferent models of computation and complexity classes.

To accomplish this ୯୳exibility, asymptotic security de୮ୢnitions are parameterized by an “admissi-

bility predicate” indicating the class of adversaries against which a problem is assumed to be hard,

or a scheme is proven to be secure. In this setting, the adversary is a family of procedures indexed by

a natural number which indicates the value of the security parameter. The admissibility predicate

can describe the e୭୮ୢciency of the adversary as well as other properties such as well-formedness or the

41



number of allowed oracle queries as a function of the security parameter.

FCF includes a simple cost model and an associated admissibility predicate describing non-uniform

worst-case polynomial time Turing machines that perform a (worst case) polynomial number of or-

acle queries. This admissibility predicate is constructed using a concrete cost model that assigns

numeric costs to particular Coq functions, Comp values, and OracleComp values. In this cost model,

the cost of executing a function is in ℕ, indicating the worst-case (over all arguments) execution

time. The cost of running a Comp is in ℕ, indicating the worst-case execution time over all outcomes.

The cost of executing an OracleComp is in ℕ → ℕ, and is a function from the cost of executing the

oracle to the cost of executing the computation, including the cost of executing all oracle queries.

The cost model for Gallina functions is axiomatic, as there is no direct way to capture such an in-

tensional property for these terms. The cost model includes axioms for primitive operations as well

as a set of combinators for building more complicated functions. For example, the model includes

an axiom stating that the xor operation for bit vectors of length 𝑐 has a cost of 𝑐. As other examples,

the model includes axioms stating that the cost of 𝑓 composed with 𝑔 is the sum of the costs of 𝑓

and 𝑔, and the cost of (if 𝑒1 then 𝑒2 else 𝑒3) is the cost of 𝑒1 plus the maximum of the costs of

𝑒2 and 𝑒3.

The axiomatic nature of the cost model allows it to be easily extended – if a proof uses a function

that is not de୮ୢned in this cost model, the proof can assume an axiom describing the cost of the func-

tion. Obviously, these cost axioms are incomplete, but in practice, the number required is relatively

small since it is only necessary to reason about the cost of functions used by a constructed adversary

in a proof. Of course, the axioms need to be carefully inspected to ensure they accurately describe

the desired complexity class, though a similar kind of inspection is needed to ensure the faithfulness

of a cost model for a deeply-embedded language.

It is also important to note that the e୭୮ୢciency of a constructed adversary in FCF is established

in an extensional manner. That is, by showing that some procedure is associated with a particular

42



cost, I am proving an upper bound on the minimum cost over all equivalent procedures. This result

is su୭୮ୢcient for a reduction, since the obligation is to show the existence of an e୭୮ୢcient procedure.

Also, a proof that a Gallina term has some particular complexity does not imply that any extracted

OCaml code will have this complexity.

4.5 Oঙ঎ছঊঝ঒ঘগঊক S঎খঊগঝ঒ঌজ ঊগ঍ R঎ঊজঘগ঒গঐ ঊঋঘঞঝ Cঘ঍঎

FCF includes a mechanism for reasoning about implementations that provides a strong guarantee

of equivalence between a model of a probabilistic program and the code implementing the model.

The framework includes a small-step operational semantics (Figure 4.3) that describes the behavior

of FCF computations on a traditional machine (in which the memory contains values rather than

probability distributions). This operational semantics is an oracle machine that is given a ୮ୢnite list

of bits representing the “random” input, and it describes how a computation takes a single step to

produce a new computation(more), a ୮ୢnal value(done), or fails due to insu୭୮ୢcient input bits(eof ).

In the operational semantics, the “random” inputs are provided in the list of bits s. When ran-

dom inputs are requested, these bits are shif୴ed out of the list and given to the program, and the rest

of the list becomes the new value of s. Note that I chose to model the random input as a list instead

of a stream in order to simplify the development in Coq, and also to allow reasoning about systems

that are only given ୮ୢnite “random” input.

There is only one rule for ret in this semantics, and this rule passes along s untouched and states

that the computation is complete and the ୮ୢnal value is the value that was supplied to the ret con-

structor. There are three possible ways for a sequence to take a step, depending on what happens

when the ୮ୢrst computation in the sequence takes a step. In essence, the ୮ୢrst computation is exe-

cuted until it is done, and then the resulting value is given to the function de୮ୢning the second com-

putation. If the random bits are exhausted when the ୮ୢrst computation is running, then the entire

43



𝑟𝑒𝑡 𝑎, 𝑠 → 𝑑𝑜𝑛𝑒 𝑎, 𝑠

(𝑐, 𝑠) → 𝑑𝑜𝑛𝑒 𝑎, 𝑠ດ

(𝑥 $← 𝑐; 𝑓 𝑥), 𝑠 → 𝑚𝑜𝑟𝑒 (𝑓 𝑎), 𝑠ດ

(𝑐, 𝑠) → 𝑚𝑜𝑟𝑒 𝑐ດ, 𝑠ດ

(𝑥 $← 𝑐; 𝑓 𝑥), 𝑠 → 𝑚𝑜𝑟𝑒 (𝑥 $← 𝑐ດ; 𝑓 𝑥), 𝑠ດ

(𝑐, 𝑠) → 𝑒𝑜𝑓

(𝑥 $← 𝑐; 𝑓 𝑥), 𝑠 → 𝑒𝑜𝑓

𝑠ℎ𝑖𝑓𝑡𝑂𝑢𝑡 𝑠 𝑛 = 𝑆𝑜𝑚𝑒 (𝑣, 𝑠ດ)
{0, 1}𝑛, 𝑠 → 𝑚𝑜𝑟𝑒 (𝑟𝑒𝑡 𝑣) 𝑠ດ

𝑠ℎ𝑖𝑓𝑡𝑂𝑢𝑡 𝑠 𝑛 = 𝑁𝑜𝑛𝑒
{0, 1}𝑛, 𝑠 → 𝑒𝑜𝑓

𝑅𝑒𝑝𝑒𝑎𝑡 𝑐 𝑃, 𝑠 → 𝑚𝑜𝑟𝑒 (𝑥 $← 𝑐; 𝑖𝑓 (𝑃 𝑥) 𝑡ℎ𝑒𝑛 (𝑟𝑒𝑡 𝑥) 𝑒𝑙𝑠𝑒 (𝑅𝑒𝑝𝑒𝑎𝑡 𝑐 𝑃)), 𝑠
Figure 4.3: Small-stepOperational Semantics

sequence fails to complete due to bit exhaustion. The sampling operation simply steps to (ret v)

when v can be shif୴ed out of the list, or eof if there are insu୭୮ୢcient bits. The Repeat operation takes

one step to the appropriate sequence that runs the underlying computation, tests for the termina-

tion condition, and performs another Repeat if the termination condition is not met.

To show that this semantics is correct, I consider [𝑐]𝑛, the multiset of results obtained by running

a program 𝑐 under this semantics on the set of all input lists of length 𝑛. One can interpret [𝑐]𝑛 as

a distribution where the mass of some value 𝑎 in the distribution is the proportion of input strings

that cause the program to terminate with value 𝑎. The statement of equivalence between the seman-

tics is shown in Theorem 10.

؄eorem 10. If c is well-formed, then lim
𝑛→∞

[𝑐]𝑛 = J𝑐K
44



FCF contains a proof of Theorem 10 as a validation of the operational semantics used for extrac-

tion and reasoning about implementations. This proof is described in Appendix A.

To obtain an implementation from a model, one can use the standard Coq extraction mechanism

to extract the operational semantics along with the model of interest and all supporting types and

functions. This semantics can also be used to prove that an implementation in C (or any language

that can be modeled in Coq) is equivalent to the model and therefore shares some of its security

properties. Both of these techniques for producing veri୮ୢed implementations are described in Chap-

ter 7.

This alternate semantics also provides other bene୮ୢts. Because limits are unique, if two programs

are equivalent under the operational semantics, then they are also equivalent under the denotational

semantics. This allows us to prove equivalence of two programs using the operational semantics

when it is more convenient to do so. Another bene୮ୢt is that the operational semantics can be con-

sidered to be the basic semantics for computations, and the denotational semantics no longer needs

to be trusted. Some may prefer this arrangement, since the operational semantics more closely re-

sembles a typical model of computation, and may be easier to understand and inspect. The opera-

tional semantics can also be used as a basis for a model of computation used to determine whether

programs are e୭୮ୢcient.

4.6 R঎কঊঝ঎঍Wঘছঔ

There has been a large amount of work in the area of verifying cryptographic schemes in recent

years. In this section we will describe some of this related work, focusing on systems that attempt to

establish security in the computational model. CertiCrypt 11 and EasyCrypt9 have been thoroughly

discussed previously in this paper.

There are several other examples of frameworks for cryptographic security proofs implemented

45



within proof assistants. The most similar work is that of Nowak40, who was the ୮ୢrst to develop

proofs of cryptography in Coq using a shallow embedding in which programs have probability dis-

tributions as their denotations. FCF builds on this work by adding more tools for modeling and rea-

soning such as procedures with oracle access (Section 4.1), a program logic (Section 4.3), and asymp-

totic reasoning (Section 4.4).

The work of A୭feldt et al. 2 is a Coq library utilizing a deeply-embedded imperative programming

language. This library is a predecessor to CertiCrypt, and it includes some important elements that

were later adopted by CertiCrypt. Notably, the probabilistic programming language in this work is

given a semantics in which program states are distributions, and the semantics describes how these

distributions are transformed by each command in the language. CertiCrypt and EasyCrypt ex-

tended this work by adding language constructs such as oracles and unrestricted loops, and well as

reasoning tools such as the Probabilistic Relational Hoare Logic.

Verypto 17 is a fully-featured framework built on Isabelle 39 that includes a deep embedding of a

functional programming language. To allow state information to remain hidden from adversaries,

Verypto provides ML-style references, in contrast to the oracle system provided by FCF. To date,

Verypto has only been used to prove the security of simple constructions, but this work uses an

interesting approach that deserves more exploration.

CryptoVerif20 is a tool based on a concurrent, probabilistic process calculus that is only able to

prove properties related to secrecy and authenticity. CryptoVerif is highly automated to the extent

that it will even attempt to locate intermediate games, and so proof development in CryptoVerif re-

quires far less e୭fort compared to FCF or EasyCrypt. However, there are a large number of proofs

that could be completed in FCF or EasyCrypt that are impossible in CryptoVerif due to its special-

ized nature.

Re୮ୢnement types 16 have been used by Fournet et al 31 to develop proofs of security for crypto-

graphic schemes in the computational model. In this system, a security property is speci୮ୢed as an

46



ideal functionality (in the sense of the real/ideal paradigm), and proofs are completed using the “se-

quence of games” style. This system is limited by the fact that the language is not probabilistic, and

it must simply be assumed that the behavior of the ideal functionality is similar to the corresponding

real functionality. This approach allows the proofs of security to be fairly simple, but no concrete

security claims are proved, so it may be di୭୮ୢcult to make practical claims based on such a proof.

Computational soundness 1 provides another mechanism for verifying cryptographic schemes.

This approach attempts to derive security in the computational model from security in the symbolic

model by showing that any likely execution trace in the computational model also exists in the sym-

bolic model. It is possible to mechanize such a proof as described in6. This approach is limited to

classes of schemes for which computational soundness results have been discovered. Another limita-

tion with this approach is that it can only produce proofs in the asymptotic setting—there is no way

to prove concrete security claims.

Protocol Composition Logic (PCL) 27 provides a logic and proof system for verifying crypto-

graphic schemes in the symbolic model. The system is based on a process calculus and allows reason-

ing about the results of individual protocol steps. More recent work 28 has extended this logic to al-

low for proofs in the computational model. In computational PCL, formulas are interpreted against

probability distributions on traces and a formula is true if it holds with overwhelming probability.

This approach is similar to computational soundness in that low-probability traces are ignored, and

proofs of concrete security claims are impossible.

4.7 Cঘগঌকঞজ঒ঘগ

FCF is designed in such a way that the language semantics is simple and easy to understand. Using

this semantics as a foundation, I build a sophisticated set of tools for reasoning about cryptographic

systems. These tools, including a theory of distributions, a program logic, and a library of program-

47



ming constructions, are proved correct within Coq. The resulting system can be used to develop and

check cryptographic proofs without trusting any more than the semantics of the language and the

Coq proof checker.

I show in Chapter 5 and Chapter 6 how to complete proofs in this framework. Appendix A con-

tains more technical details on the operational semantics and the proof that relates the operational

semantics to the denotational semantics.

48



5
Example Proofs

Chapter 3 included some simple examples in order to introduce FCF and its components. In this

chapter, I describe several complete cryptographic proofs in order to explain proof development

in FCF and illustrate several aspects of the framework. The examples in this chapter are relatively

simple, and they include proofs of security for encryption schemes and pseudorandom generators.

Chapter 6 contains a proof of a complex searchable symmetric encryption scheme that demonstrates

the scalability of FCF. Chapter 7 includes a description of a proof of security for HMAC that is used

49



to show that an implementation of this construction is secure.

5.1 Eক Gঊখঊক Eগঌছঢঙঝ঒ঘগ

I begin with a mechanized proof of security for El Gamal 30 encryption. This proof is relatively sim-

ple, and many of the details of the proof are provided for illustration purposes. Later proofs will

omit some details for the sake of brevity.

Class Group := {
GroupElement : Set;
groupOp :

GroupElement -> GroupElement -> GroupElement;
identity : GroupElement;
inverse : GroupElement -> GroupElement;

associativity : forall (x y z : GroupElement),
groupOp (groupOp x y) z =
groupOp x (groupOp y z);

left_identity : forall (a : GroupElement),
groupOp identity a = a;

right_identity : forall (a : GroupElement),
groupOp a identity = a;

left_inverse : forall (a : GroupElement),
groupOp (inverse a) a = identity;

right_inverse : forall (a : GroupElement),
groupOp a (inverse a) = identity

}.

(* Introduce a new scope. *)
Section GroupProperties.

(* Assume we have a Group in this scope. *)

Context ‘{G : Group}.

(* Define exponentiation for group elements *)
Fixpoint groupExp(a : GroupElement)(n : nat) :=

match n with
| 0 => identity
| S n’ => groupOp a (groupExp a n’)

end.

Lemma groupExp_identity : forall n,
groupExp identity n = identity.

..
Qed.

Theorem groupExp_plus : forall n1 n2 x,
groupExp x (n1 + n2) =
groupOp (groupExp x n1) (groupExp x n2).

..
Qed.

Theorem groupExp_mult : forall n2 n1 x,
(groupExp (groupExp x n1) n2) =
(groupExp x (n1 * n2)).

..
Qed.

End GroupProperties.

Listing 15: GroupDefinition and Facts

5.1.1 Cঢঌক঒ঌ Gছঘঞঙজ

El Gamal encryption is based on the assumed hardness of certain problems related to cyclic groups.

FCF includes a de୮ୢnition of groups and ୮ୢnite cyclic groups (Listings 15 and 16), as well as a set of

50



Class FiniteCyclicGroup(G : Group) := {
generator : GroupElement;
order : posnat;
groupLog : GroupElement -> nat;
group_cyclic: forall (a : GroupElement),

generator^(groupLog a) = a;
groupLog_correct: forall x,

modNat (groupLog (generator^x)) order =
modNat x order;

groupIdent : generator^0 = identity;
groupOrder : generator^order = generator^0

}.

Section FiniteCyclicGroupProperties.

Context‘{FCG : FiniteCyclicGroup}.

Theorem groupExp_eq : forall x y,
modNat x order = modNat y order <->
generator^x = generator^y.

...
Qed.

Theorem commutativity : forall x y,
x * y = y * x.

...
Qed.

Theorem groupExp_distrib : forall n x y,
(x * y)^n = x^n * y^n.

...
Qed.

Theorem ident_l_unique : forall x y,
x * y = y ->
x = identity.

...
Qed.

Theorem groupExp_mod : forall n,
generator^n = generator^(modNat n order).

...
Qed.

End FiniteCyclicGroupProperties.

Listing 16: Finite Cyclic GroupDefinition and Facts

facts about these objects that are proven from the assumptions in the de୮ୢnitions. I use Coq’s nota-

tion system to assign in୮ୢx * to mean groupOp and in୮ୢx ̂ to mean groupExp. The type class mecha-

nism of Coq allows these de୮ୢnitions and facts to be easily incorporated into a security proof.

5.1.2 Eক Gঊখঊক Eগঌছঢঙঝ঒ঘগ

The El Gamal key generation, encryption, and decryption algorithms are provided in Listing 17. In

this listing, the [0 .. order) notation invokes the RndNat construction introduced in Section

3.2.2 to produce a uniform natural number that is less than the order of the group. I can prove that

the decryption algorithm is correct as shown in Listing 18. In this theorem getSupport is a func-

tion that returns the support of the distribution corresponding to the speci୮ୢed computation. This

theorem considers any key pair that is produced by the key generation routine and any message and

ciphertext that is produced by encrypting that message. The theorem states that decrypting the ci-

phertext using the appropriate key produces the original message.

51



The proof of correctness of the decryption function begins by unfolding all the relevant de୮ୢni-

tions. Then Coq’s intuition tactic introduces all of the required hypotheses. The simp_in_support

tactic, which is provided by FCF, is an automated tactic that locates hypotheses stating that some

value is in the support of some distribution and replaces these hypotheses with more informative

ones. For example if I have that x is in the support of a <-$ c1; (c2 a), then simp_in_support

will replace this hypothesis with a new variable y and assumptions that y is in the support of c1 and

x is in the support of (c2 y). This tactic performs substitution and other simpli୮ୢcations as well,

and following the application of this tactic I can complete the proof by rewriting and applying some

assumptions and results from group theory and arithmetic.

Definition ElGamalKeygen :=
m <-$ [0 .. order);
ret (m, g^m).

Definition ElGamalEncrypt(msg key : GroupElement) :=
m <-$ [0 .. order);
ret (g^m, key^m * msg).

Definition ElGamalDecrypt(key : nat)(ct : GroupElement * GroupElement) :=
[c1, c2] <-2 ct;
s <- c1^key;
(inverse s) * c2.

Listing 17: El Gamal Encryption

Theorem ElGamalDecrypt_correct :
forall (pubkey msg : GroupElement)(prikey : nat)(ct : GroupElement * GroupElement),

In (prikey, pubkey) (getSupport ElGamalKeygen) ->
In ct (getSupport (ElGamalEncrypt msg pubkey)) ->
ElGamalDecrypt prikey ct = msg.

unfold ElGamalKeygen, ElGamalEncrypt, ElGamalDecrypt.
intuition. repeat simp_in_support.
rewrite <- associativity.
repeat rewrite groupExp_mult.
rewrite mult_comm.
rewrite left_inverse.
apply left_identity.

Qed.

Listing 18: El Gamal Key Decryption Correctness

52



5.1.3 T঑঎ D঎ঌ঒জ঒ঘগঊক D঒এএ঒঎ H঎ককখঊগ Pছঘঋক঎খ

El Gamal derives its security from the assumed hardness of the Decisional Di୭୮ୢe Hellman Problem,

described in Listing 19. The de୮ୢnitions for this problem are parameterized on an abstract procedure

A. Intuitively, A is an adversary which ୮ୢnds itself in one of two “worlds”, DDH0 or DDH1. At the end

of the procedure, A outputs a bit in order to indicate the world in which it believes it resides. Ac-

cording to the DDH assumption, if A is computationally e୭୮ୢcient (e.g. probabilistic polynomial

time), then it can only distinguish these two worlds with negligible probability.

Section DDH.

Context‘{FCG : FiniteCyclicGroup}.
Variable A : (GroupElement * GroupElement * GroupElement) -> Comp bool.

Definition DDH0 :=
x <-$ [0 .. order);
y <-$ [0 .. order);
b <-$ (A (g^x, g^y, g^(x * y)));
ret b.

Definition DDH1 :=
x <-$ [0 .. order);
y <-$ [0 .. order);
z <-$ [0 .. order);
b <-$ (A (g^x, g^y, g^z));
ret b.

Definition DDH_Advantage:= | Pr[DDH0] - Pr[DDH1] |.

End DDH.

Listing 19: Decisional Diffie Hellman

5.1.4 Iগ঍঒জঝ঒গঐঞ঒জ঑ঊঋ঒ক঒ঝঢ ঞগ঍঎ছ C঑ঘজ঎গ Pকঊ঒গঝ঎ডঝ Aঝঝঊঌঔ

I will show that El Gamal ciphertexts are indistinguishable under chosen plaintext attack (IND-

CPA) as de୮ୢned in Listing 20. The de୮ୢnition of INDୖCPA is parameterized on an abstract key gen-

eration procedure (Gen), encryption procedure (Enc), and adversary procedures (A1 and A2). I can

conclude that some encryption scheme (G, E) is secure in the sense of INDୖCPA if 𝐴𝑑𝑣IND-CPA(𝐺, 𝐸, 𝐴1, 𝐴2)

53



is small for all A1 and A2. Intuitively, this means that the adversary composed of A1 and A2 cannot

e୭୮ୢciently distinguish the encryptions of any two plaintexts that it is capable of e୭୮ୢciently produc-

ing.

Note that the de୮ୢnition of INDୖCPA allows the two adversary procedures to share state, which is

performed by receiving a state object from the ୮ୢrst procedure and giving it to the second procedure.

Proofs of security using this de୮ୢnition will be quanti୮ୢed over all adversary procedures and all types

of state.

Section IND_CPA.

Variable Plaintext : Set.
Variable Ciphertext : Set.
Variable PrivateKey : Set.
Variable PublicKey : Set.

Variable KeyGen : Comp (PrivateKey * PublicKey).
Variable Encrypt : Plaintext -> PublicKey -> Comp Ciphertext.

Variable A_state : Set.
Variable A1 : PublicKey -> Comp (Plaintext * Plaintext * A_state).
Variable A2 : (Ciphertext * A_state) -> Comp bool.

Definition IND_CPA_G :=
[prikey, pubkey] <-$2 KeyGen;
[p0, p1, a_state] <-$3 (A1 pubkey);
b <-$ {0, 1};
pb <- if b then p0 else p1;

c <-$ (Encrypt pb pubkey);
b’ <-$ (A2 (c, a_state));
ret (eqb b b’).

Definition IND_CPA_Advantage := | Pr[IND_CPA_G] - 1 / 2 |.

End IND_CPA.

Listing 20: Indistinguishability under Chosen Plaintext Attack

5.1.5 Pছঘঘএ ঘএ S঎ঌঞছ঒ঝঢ

A typical approach to proving the security of El Gamal encryption is to show that Theorem 11 is

true, thus contradicting our assumption that the DDH problem is hard. I will actually prove Theo-

54



rem 12, which is a stronger theorem, and which isolates the equivalence goal from the e୭୮ୢciency goal,

allowing me to prove them independently.

؄eorem 11. For all e୭୮ୢcient A1 and A2 for which

𝐴𝑑𝑣IND-CPA(𝐸𝑙𝐺𝑎𝑚𝑎𝑙𝐺𝑒𝑛, 𝐸𝑙𝐺𝑎𝑚𝑎𝑙𝐸𝑛𝑐, 𝐴1, 𝐴2)

is non-negligible, there exists e୭୮ୢcient B such that 𝐴𝑑𝑣𝐷𝐷𝐻 (𝐵) is non-negligible.
؄eorem 12. For all A1 and A1, there exists B such that B is e୭୮ୢcient if A1 and A2 are e୭୮ୢ-
cient, and

𝐴𝑑𝑣IND-CPA(𝐸𝑙𝐺𝑎𝑚𝑎𝑙𝐺𝑒𝑛, 𝐸𝑙𝐺𝑎𝑚𝑎𝑙𝐸𝑛𝑐, 𝐴1, 𝐴2) =
𝐴𝑑𝑣𝐷𝐷𝐻 (𝐵)

Definition B(gx gy gz : GroupElement) : Comp bool :=
[s, p0, p1] <--** A1(gx);
b <- {0,1};
pb <-! if b then p0 else p1;
c <-! (gy, gz * pb);
b’ <- (A2 s c);
ret (eqb b b’).

Theorem ElGamal_IND_CPA_Advantage :
IND_CPA_Advantage ElGamalKeygen ElGamalEncrypt A1 A2 ==
DDH_Advantage B.

Listing 21: DDHDistinguisher

I will use the procedure de୮ୢned in Listing 21 as the witness to prove Theorem 12. First, it is obvi-

ous that B can be constructed from any A1 and A2. For simplicity, I do not formally prove that B is

e୭୮ୢcient (assuming A1 and A2 are e୭୮ୢcient), but this fact can be established by inspection. This list-

ing also contains the statement of the main theorem in Coq notation. This statement is an equality

on distances, and I prove this by showing that the corresponding terms in the distance are equal, and

thus the distances must be equal.

Listing 22 contains the statement of equality on the ୮ୢrst pair of terms along with the proof of this

fact. Each line of the proof contains the application of a single tactic. Most of these tactics simply

inline de୮ୢnitions and swap the order of statements in order to get identical statements at the begin-

55



ning of the procedures. Once the procedures begin with identical statements, they can be removed

using comp_skip. I rewrite with the groupExp_mult identity (from the group theory library) to-

ward the end of the proof in order to justify that the statements at the beginning of the procedures

are identical. I use intuition to discharge trivial goals, such as establishing the equality of two

terms that are syntactically identical. Note that dist_at is a tactical (a higher-order tactic) that

accepts a tactic and a location (lef୴ computation or right computation and statement number) at

which the tactic should be applied. This tactical is used in this proof to inline statements that are not

at the beginning of a computation.

Theorem ElGamal_IND_CPA0 :
Pr[IND_CPA_G ElGamalKeygen ElGamalEncrypt A1 A2] ==
Pr[DDH0 B].

unfold IND_CPA_G, DDH0, ElGamalKeygen, ElGamalEncrypt, B.

inline_first.
comp_skip.

dist_at dist_inline rightc 1.
comp_swap rightc.
comp_skip.

destruct x0.
destruct p.

dist_at dist_inline rightc 1.
comp_swap rightc.
comp_skip.

comp_inline leftc.
comp_skip.

comp_inline rightc.
comp_skip.
rewrite groupExp_mult; intuition.

comp_simp.
intuition.

Qed.

Listing 22: Proof of Equality of First Terms

The proof of equality for the remaining terms is easier if I introduce some intermediate games

and prove the equality in several steps. Procedures G1 and G2 (Listing 23) are used to prove that

56



Pr[𝐷𝐷𝐻1(𝐵) = 1] = 1/2 one step at a time by transitivity of equality. These procedures use a

subroutine called RndG that uniformly samples an element from the group.

Definition G1 :=
gx <-$ RndG;
gy <-$ RndG;
[p0, p1, s] <-$3 (A1 gx);
b <-$ {0, 1};
gz’ <-$ (
pb <- if b then p0 else p1;
gz <-$ RndG ; ret (gz * pb));
b’ <-$ (A2 (gy, gz’, s));
ret (eqb b b’).

Definition G2 :=
gx <-$ RndG;
gy <-$ RndG;
[p0, p1, s] <-$3 (A1 gx);
gz <-$ RndG ;
b’ <-$ (A2 (gy, gz, s));
b <-$ {0, 1};
ret (eqb b b’).

Listing 23: ElGamal Proof Intermediate Procedures

These procedures are related to the DDH1 game and to each other by equality as shown in Listing

24. The proofs of these facts are omitted, but summarized here. The ୮ୢrst fact follows only from re-

ordering of independent statements by Theorem 2 (Commutativity). The second proof is essentially

a one-time pad argument which is summarized here. The primary di୭ference between procedures

G1 and G2 is that the second parameter given to A2 is a random group element in G2, but in G1 it is

the product of a random group element and a particular group element. This is a form of one-time

pad, so I can show that these values are equivalent. This argument is formalized in the one-time pad

(OTP) module that is included in the FCF library. In order to apply this argument, I instantiate the

“adversary” in the one-time pad proof using the remaining computation of G1 and G2 (af୴er the

one-time pad is applied).

Theorem ElGamal_G1_DDH1 :
Pr [G1] == Pr [DDH1 B].

Theorem ElGamal_G1_G2 :
Pr[G1] == Pr[G2].

Listing 24: Equivalence of Intermediate Procedures

The last fact that I need is that the probability that the adversary produces true in game G2 is

exactly one half. This proof can be completed by removing all of the statements before the coin

୯୳ip using the distribution irrelevance theorem (Theorem 3), and then invoking the automated

57



dist_compute tactic to compute this probability value. Given this theorem, we can apply tran-

sitivity of equality to show that the probability that the adversary produces true in game DDH1 is

one-half. These theorems are stated in Listing 25.

Theorem ElGamal_G2_OneHalf :
Pr [G2] == 1 / 2.

Theorem ElGamal_DDH1_OneHalf :
Pr [DDH1 B] == 1 / 2.

Listing 25: Calculated Probability of GameG2

At this point, I have all the facts necessary to prove the theorem stated in Listing 21. The theo-

rem in Listing 22 establishes the equality of the ୮ୢrst pair of terms, and the ୮ୢnal result of Listing 25

establishes the equality of the second pair of terms. Thus the distances are equal.

5.2 Sঢখখ঎ঝছ঒ঌ Eগঌছঢঙঝ঒ঘগ এছঘখ ঊ Pজ঎ঞ঍ঘছঊগ঍ঘখ Fঞগঌঝ঒ঘগ

The next example considers a simple encryption scheme constructed from a pseudorandom func-

tion (PRF), and I prove that ciphertexts produced by this scheme are INDୖCPA. This example

proof is only slightly more complex than the El Gamal example (Section 5.1.2), and yet it contains

many of the elements that one would ୮ୢnd in a typical cryptographic proof. As a result, this example

exercises all of the key functionality of FCF. Notably, this proof gives a result in the concrete setting

and then uses that result to develop an asymptotic security claim.

5.2.1 Cঘগঌছ঎ঝ঎ S঎ঌঞছ঒ঝঢ D঎এ঒গ঒ঝ঒ঘগজ

In FCF, concrete security de୮ୢnitions are used to describe properties that some construction is proven

to have, as well as problems that are assumed to be hard. In the PRF encryption proof, I use the def-

inition of a PRF to assume that such a PRF exists, and I use that assumption to prove that the con-

struction in question has the INDୖCPA property. A concrete security de୮ୢnition typically contains

58



Variable Key D R : Set.
Variable RndKey : Comp Key.
Variable RndR : Comp R.
Variable A : OracleComp D R bool.
Variable f : Key -> D -> R.

Definition f_oracle(k: Key)(x: unit)
(d : D) : Comp (R * unit) :=
ret (f k d, tt).

Definition PRF_G_A : Comp bool :=
k <-$ RndKey;
[b, _] <-$2 A (f_oracle k) tt;
ret b.

Definition PRF_G_B : Comp bool :=
[b, _] <-$2 A (RndR_func) nil;
ret b.

Definition PRF_Advantage :=
| Pr[PRF_G_A] - Pr[PRF_G_B] |.

Listing 26: PRFConcrete Security Definition

Variable eta : nat.
Variable f : Bvector eta ->

Bvector eta -> Bvector eta.

Definition PRFE_KeyGen :=
{0, 1} ^ eta.

Definition PRFE_Encrypt
(k : Key )(p : Plaintext) :=
r <-$ {0, 1} ^ eta;
ret (r, p xor (f k r)).

Definition PRFE_Decrypt
(k : Key)(c : Ciphertext) :=
(snd c) xor (f k (fst c)).

Listing 27: Encryption using a PRF

Variable Plaintext Ciphertext Key State : Set.
Variable KeyGen : Comp Key.
Variable Encrypt : Key -> Ciphertext

-> Comp Plaintext.
Variable A1 : OracleComp

Plaintext Ciphertext
(Plaintext * Plaintext * State).

Variable A2 : State -> Ciphertext ->
OracleComp Plaintext Ciphertext bool.

Definition EncryptOracle
(k: Key)(x: unit)(p: Plaintext) :=
c <-$ Encrypt k p;
ret (c, tt).

Definition IND_CPA_SecretKey_G :=
key <-$ KeyGen ;
[b, _] <-$2
(

[p0, p1, s_A] <--$3 A1;
b <--$$ {0, 1};
pb <- if b then p1 else p0;
c <--$$ Encrypt key pb;
b’ <--$ A2 s_A c;
$ ret eqb b b’

)
(EncryptOracle key) tt;
ret b.

Definition
IND_CPA_SecretKey_Advantage :=
| Pr[IND_CPA_SecretKey_G] - 1/2 |.

Listing 28: IND-CPAConcrete Security Definition

some game and an expression that describes the advantage of some adversary – i.e., the probability

that the adversary will “win” the game.

The game used to de୮ୢne the concrete security of a PRF is shown in Listing 26. Less formally, I say

that f is a PRF for some adversaryA ifA cannot e୭fectively distinguish f from a random function.

So this means that I expect that PRF_Advantage is “small” as long as A is an admissible adversary.

The function f_oracle simply puts the function f in the form of an oracle, though a very sim-

ple one with no state and with deterministic behavior. Recall that an oracle in FCF is any term of

type S -> A -> Comp (B * S) for arbitrary types S, A, and B. The procedure RndR_func is an

59



oracle implementing a random function constructed using the provided computation RndR. The

expressions involving A use a coercion in Coq to invoke the denotational semantics for OracleComp,

and therefore ensure that A can query the oracle but has no access to the state of the oracle.

At a high level, this de୮ୢnition involves two games describing two di୭ferent “worlds” in which

the adversary may ୮ୢnd itself. In one world (PRF_G_A) the adversary interacts with the PRF, and in

the other (PRF_G_B) the adversary interacts with a random function. In each game, the adversary

interacts with the oracle and then outputs a bit. The advantage of the adversary is the di୭ference

between the probability that it outputs 1 in world PRF_G_A and the probability that it outputs 1 in

world PRF_G_B. If f is a PRF, then this advantage should be small.

The concrete security de୮ୢnition for INDୖCPA encryption is shown in Listing 28. Note that this

is the symmetric key version of this de୮ୢnition, so it di୭fers from the security de୮ୢnition used in the

El Gamal proof. In this de୮ୢnition, KeyGen and Encrypt are the key generation and encryption

procedures. The adversary comprises two procedures, A1 and A2with di୭ferent signatures, and the

adversary is allowed to share arbitrary state information between these two procedures. This de୮ୢ-

nition uses a slightly di୭ferent style than the PRF de୮ୢnition—there is one game and the “world” is

chosen at random within that game. Then the adversary attempts to determine which world was

chosen.

In Listing 28, the game produces an encryption oracle from the Encrypt function and a randomly-

generated encryption key. Then the remainder of the game, including the calls to A1 and A2, may

interact with that oracle.

5.2.2 Cঘগজঝছঞঌঝ঒ঘগ

The construction, like the security de୮ୢnitions, can be modeled in a very natural way. Of course, one

must take care to ensure that the construction has the correct signature as speci୮ୢed in the desired

security property. The PRF encryption construction is shown in Listing 27.

60



In the PRF Encryption construction, I assume a nat called eta (𝜂) which will serve as the secu-

rity parameter. The encryption scheme is based on a function f, and the scheme will only be secure

if f is a PRF. The type of keys and plaintexts is bit vectors of length eta, and the type of cipher-

texts is pairs of these bit vectors. The decryption function is included for completeness, but it is not

needed for this security proof.

5.2.3 S঎હঞ঎গঌ঎ ঘএ Gঊখ঎জ

The sequence of games represents the overall strategy for completing the proof. In the case of PRF

Encryption, I want to show that the probability that the adversary will correctly guess the randomly

chosen “world” is close to 1/2. I accomplish this by instantiating the INDୖCPA security de୮ୢnition

with the construction, and then transforming this game, little by little, until I have a game in which

this probability is exactly 1/2. Each transformation may add some concrete value to the bounds, and I

want to ensure that the sum of these values is small.

....IND_CPA_G. =. G1.

≈PRF_Advantage

.

G2

.

≈Random List Collision

.

G3

.

=One Time Pad

.

..G4. =. G5. =. 1/2

Figure 5.1: PRF Encryption Sequence of Games

Definition PRFE_Encrypt_OC (x : unit)
(p : Plaintext) : OracleComp
(Bvector eta) (Bvector eta)
(Ciphertext * unit) :=
r <--$$ {0,1} ^ eta;
pad <--$ OC_Query r;
$ (ret (r, p xor pad, tt)).

Definition PRF_A : OracleComp
(Bvector eta) (Bvector eta) bool :=
[a, n] <--$2 OC_Run A1 PRFE_Encrypt_OC tt;
[p0, p1, s_A] <-3 a;
b <--$$ {0,1}; r <--$$ {0,1}^eta;
pb <- if b then p1 else p0;
pad <--$ OC_Query r;
c <- (r, pb xor pad);
z <--$ OC_Run (A2 s_A c) PRFE_Encrypt_OC n;
[b’,_] <-2 z; $ ret (eqb b b’).

Listing 29: The Constructed Adversary Against the PRF

The diagram in Figure 5.1 shows the entire sequence of games, as well as the relationship between

each pair of games in the sequence. In this diagram, two games are related by= if they are identical,

61



and by ≈ if they are close. When the equivalence is non-trivial, the diagram gives an argument for

the equivalence, which implies a bound on the distance between the games when they are not equal.

The intermediate game code is omitted, but a detailed description of each game transformation

follows.

I begin by instantiating the INDୖCPA de୮ୢnition with the construction and simplifying to pro-

duce game G1. This equivalence is obvious, and the proof can be completed using Coq’s reflexiv-

ity tactic.

Next we replace the function fwith a random function, and the distance between G1 and G2 is

exactly the advantage of some adversary against a PRF. The adversary against the PRF (Listing 29) is

constructed from A1 and A2. PRFE_Encrypt_OC is an encryption oracle that interacts with the PRF

as an oracle. PRF_A provides this encryption oracle to A1 and A2 (the two adversary procedures in

the INDୖCPA de୮ୢnition) using the OC_Run operation. This proof can be completed by performing

simple manipulations and then unifying with PRF_Advantage.

Now I replace the random function output used to encrypt the challenge ciphertext with a bit

vector selected uniformly at random to produce game G3. I show that G2 and G3 are “close” by

demonstrating that these games are “identical until bad” in the sense of Theorem 6. The “bad”

event of interest is the event that the randomly-generated PRF input used to encrypt the challenge

plaintext is also used to encrypt some other value during the interaction between the adversary and

the encryption oracle. There are two separate adversary procedures, and each one is capable of en-

countering r during its interaction with the oracle. To get an expression for the probability of the

“bad” event, I assume natural numbers 𝑞1 and 𝑞2, and that A1 performs at most 𝑞1 queries and A2

performs at most 𝑞2 queries. FCF includes a library module called RndInList that includes general-

purpose arguments related to the probability of encountering a randomly selected value in a list of

a certain length, and the probability of encountering a certain value in a list of randomly-generated

elements of a certain length. Using these arguments, I conclude that the distance between G2 and

62



G3 is 𝑞1/2𝜂 + 𝑞2/2𝜂.

The previous equivalences are proven using the program logic described in Chapter 4. Once the

random functions are removed, there are no more issues related to state, and the remainder of the

proof can be completed by reasoning on the probability distributions using the theory of distribu-

tions.

Theorem G3_G3_1_equiv:

Pr[G3] == Pr[G3_1].

unfold G3, G3_1.

repeat (comp_simp;

inline_first;

comp_skip).

Qed.

Theorem G3_1_G4_equiv:

Pr[G3_1] == Pr[G4].

unfold G3_1, G4.

do 4 (comp_skip;

comp_simp).

apply xor_OTP_eq.

reflexivity.

Qed.

Listing 30: Proof of Equivalence of G3

andG4

In G3, the encryption of the challenge plaintext is by one-time

pad, so I can replace the resulting ciphertext with a randomly-

chosen value to produce G4 using the generic one-time pad argu-

ment provided with the FCF library. This step is relatively simple

so I include the full code of the proof (Listing 30) for illustration.

The one-time pad argument expects the game to be in a particular

form, so I develop another intermediate game (G3_1), and I start

by proving that G3 is equivalent to G3_1. These games only dif-

fer by associativity, so a simple repeated proof script establishes

their equivalence. The second proof in Listing 30 focuses on the

appropriate context, and then applies the one-time pad argument

for xor.

In G4, the challenge bit is independent of all other values in

the game, so I can move the sampling of this bit to the end of the

game to produce G5. The proof of equivalence is by repeated

application of the commutativity theorem (Theorem 2).

Finally, I develop the proof that the adversary wins Game 5 with probability exactly 1/2. This

proof proceeds by discarding all of the statements in the game before the coin ୯୳ip. Then what re-

mains is a very simple game that ୯୳ips a coin and compares the result to a ୮ୢxed value. A provided

tactic can automatically determine that the probability that this game returns true is 1/2.

63



By combining the equivalences of each pair of intermediate games, I get the ୮ୢnal concrete security

result shown in Listing 31. It is important to note that the statement of this theorem does not refer-

ence any of the intermediate games. The sequence of games was only a tool that we used to get the

୮ୢnal result, and this sequence does not need to be inspected in order to trust the result.

Theorem PRFE_IND_CPA_concrete :
IND_CPA_SecretKey_Advantage PRFE_KeyGen PRFE_Encrypt A1 A2 <=
PRF_Advantage ({0,1}^eta) ({0,1}^eta) f PRF_A + (q1 / 2^eta + q2 / 2^eta).

Listing 31: Concrete Security Result

This completes the proof of security in the concrete setting. In the next subsections, I use this

result to produce a security proof in the asymptotic setting.

5.2.4 Aজঢখঙঝঘঝ঒ঌ S঎ঌঞছ঒ঝঢ D঎এ঒গ঒ঝ঒ঘগজ

Now I give the asymptotic security de୮ୢnitions for PRFs and INDୖCPA encryption. These de୮ୢni-

tions are parameterized by an admissibility predicate as described in Section 4.4.1. The INDୖCPA

de୮ୢnition accepts two admissibility predicates—one for each adversary procedure.

The asymptotic security de୮ୢnition for a PRF is given in Listing 32. In this de୮ୢnition, RndKey,

RndR, and f are nat-indexed families of procedures. Similarly in the INDୖCPA de୮ୢnition (List-

ing 33), KeyGen and Encrypt are nat-indexed families of procedures. Both of these de୮ୢnitions are

claims over all admissible nat-indexed adversary families. Note that both de୮ୢnitions reuse the ex-

pressions provided in the concrete security de୮ୢnitions. This style provides a convenient method of

developing an asymptotic security proof from a concrete security proof.

5.2.5 Eএএ঒ঌ঒঎গঌঢ ঘএ Cঘগজঝছঞঌঝ঎঍ A঍ট঎ছজঊছ঒঎জ

The ୮ୢrst step in proving an asymptotic security result is to view each constructed adversary in the

concrete proof as a nat-indexed family of adversaries, and prove that this family is “e୭୮ୢcient” as

64



Variable D R Key : nat -> Set.
Variable RndKey : forall n, Comp (Key n).
Variable RndR : forall n, Comp (R n).
Variable f : forall n, Key n -> D n-> R n.

Definition PRF :=
forall (A : \forall n, OracleComp (D n) (R n)

bool), admissible_A A ->
negligible (fun n => PRF_Advantage
(RndKey n) (RndR n) (@f n) (A n)).

Listing 32: Definition of a PRF

Variable Plaintext Ciphertext Key State :
nat -> Set.

Variable KeyGen : forall n, Comp (Key n).
Variable Encrypt : forall n, Key n ->

Ciphertext n -> Comp (Plaintext n).

Definition IND_CPA_SecretKey :=
forall (State : nat -> Set)
(A1 : forall n, OracleComp (Plaintext n)

(Ciphertext n)
(Plaintext n * Plaintext n * State n))

(A2 : forall n, State n -> Ciphertext n ->
OracleComp (Plaintext n) (Ciphertext n) bool),
admissible_A1 A1 ->
admissible_A2 A2 ->
negligible
(fun n => IND_CPA_SecretKey_Advantage
(KeyGen n) (@Encrypt n) (A1 n) (A2 n) ).

Listing 33: Definition of IND-CPA Encryption

de୮ୢned by some complexity class. In the PRF Encryption proof, I use the non-uniform polynomial

time complexity class described in Section 4.4.1. Because this class includes a concrete cost model, I

begin with a proof of the concrete cost of each constructed adversary procedure.

First I assume costs for A1 and A2. A1_cost is a function describing the cost of A_1. A2_cost_1

is a number describing howmuch it costs for A2 to compute an OracleComp that is closed over a

state and a ciphertext. Then A2_cost_2 is a function describing the cost of executing this OracleComp.

Given these assumptions, I can give a cost to PRF_A as shown in Listing 34. In the statement of this

theorem, oc_cost, comp_cost, and cost are the cost models for OracleComp, Comp, and Coq

functions, respectively. Note that this cost model is overly conservative and some costs are counted

65



multiple times.

Theorem PRF_A_cost :
oc_cost cost (comp_cost cost) PRF_A

(fun x => (A1_cost (x + (5 * eta))) +
(A2_cost_2 (x + (5 * eta))) +
x + 5 * A2_cost_1 + 6 + 7 * eta).

Listing 34: Cost of Constructed Procedure PRF_A

This proof is completed by repeatedly applying the rule of the cost model that is relevant to the

term in the goal, which is a highly syntax-directed operation that can be mostly automated. Once

all these syntax-directed rules are applied, the developer is obligated to prove that the expression

obtained in this process is equal to (or less than) the expression in the statement of the theorem. In

this last step of the proof, automated tactics such as omega are very useful.

5.2.6 Aজঢখঙঝঘঝ঒ঌ S঎ঌঞছ঒ঝঢ Pছঘঘএ

The ୮ୢnal step in the proof is to show that the security de୮ୢnition shown in Listing 33 holds on this

construction as long as f is a PRF as de୮ୢned in Listing 32. The statement of this fact is shown in

Listing 35. Note that admissible_oc and admissible_oc_func_2 are the admissibility predi-

cates for OracleComp and for functions with two arguments that produce an OracleComp de୮ୢned

in the complexity class.

Theorem PRFE_IND_CPA :
PRF Rnd Rnd f (admissible_oc cost) ->
IND_CPA_SecretKey

PRFE_KeyGen (fun n => PRFE_Encrypt (@f n))
(admissible_oc cost)
(admissible_oc_func_2 cost).

Listing 35: Asymptotic Security of PRF Encryption

The primary obligation of this proof is to show that the function de୮ୢning the advantage of any

admissible family of adversaries against this encryption scheme is a negligible function. The fact that

66



this adversary family is admissible allows us to use the result of Listing 34, along with other facts, to

conclude that the constructed adversary family against the PRF is admissible. In the course of this

proof, I must show that the expression implied by Figure 34 is at most polynomial in 𝜂 if x is at most

polynomial in 𝜂 and all the costs related to PRF_A1 and PRF_A2 are at most polynomial in 𝜂. This

fact is proven using the provided theory of polynomial functions (Section 4.4).

From the admissibility of the constructed adversary, and from the fact the f is a PRF against all

admissible adversaries, I can conclude that the constructed adversary’s advantage against the PRF is

negligible. The advantage of this adversary against the PRF is one of the terms that appears in the

bounds of the concrete result (Listing 31). The other term is 𝑞1/2𝜂 + 𝑞2/2𝜂 , where 𝑞1 and 𝑞2 are the

number of oracle queries performed by the two adversary procedures. The admissibility predicates

ensure that each adversary only performs a polynomial number of queries, so 𝑞1 and 𝑞2 must be

polynomial in 𝜂, and this expression is negligible in 𝜂. So the advantage of the adversary against this

encryption scheme is the sum of two negligible functions, and is therefore negligible.

5.2.7 Pছঘঘএ Eগঐ঒গ঎঎ছ঒গঐ

The entire proof of security for this encryption scheme requires approximately 1500 lines of Coq

code, of which about 700 lines are speci୮ୢcation (including 100 lines of cryptographic de୮ୢnitions

and intermediate games) and 800 lines are proof. The proof incorporates another 500 lines of code

for the reusable arguments (e.g., the one-time pad argument). I expect that a skilled Coq developer

could complete such a proof in a matter of days (though he may require the help of a cryptographer

to develop the sequence of games and high-level arguments). Though this proof is relatively simple,

it includes several elements that one would ୮ୢnd in a typical cryptographic proof, and it is a good

basis for estimating the e୭fort required to complete a more complex proof.

67



5.3 A N঎ঐঊঝ঒ট঎ Eডঊখঙক঎: Dঞঊক_EC_DRBG

In this section, I mechanize the proof of Brown and Gjøsteen 22 that Dual EC DRBG is a crypto-

graphic pseudorandom generator (PRG). This PRGwas standardized in ANSI X9.82 and NIST SP

800-90A in 2005 and 2006, respectively. In 2007, Shumow and Ferguson described43 howDual EC

DRBG possibly contains a “back door” that would give certain parties the ability to easily predict

the output of the PRG, thus defeating its security.

It is not uncommon for a single scheme to be proven secure and known to be vulnerable at the

same time, and this con୯୳ict is typically caused by a mismatch between the model used in the proof

and the realization of the construction or the adversary. In the case of Dual EC DRBG, the proof of

Brown and Gjøsteen uses a slightly idealized form of the construction, which is not the same as the

construction published in the ANSI and NIST standards. I will present the proof of security of the

idealized form of this scheme, then modify the construction in order to match the standardized ver-

sion. I will then show that the proof of security is no longer valid, and I will argue that no proof of

security exists for the standardized version of this scheme. This exercise illustrates the importance of

inspecting the models used in the proof, and it shows how FCF can be used to locate vulnerabilities

in insecure schemes.

5.3.1 Dঞঊক ECDRBG S঎ঌঞছ঒ঝঢ

Informally, a PRG is a scheme that produces a number of pseudorandom bits from a ୮ୢxed random

seed. The PRG has some state, and it provides a function which produces some output and a new

value for its state. By calling this function repeatedly, it should be possible to produce an arbitrary

(polynomial) number of pseudorandom bits.

Dual EC DRBG is based on a ୮ୢnite cyclic group, and both the generator state and the output is

an element of this group. In reality, this group is derived from an elliptic curve over a ୮ୢnite ୮ୢeld, but

68



I can complete this proof of security using the ୮ୢnite cyclic group type class shown in Section 5.1. I

also assume the functions x and from_xwhich converts a group element to a natural number and

produces a group element from a natural number, respectively. Because the group is based on an

elliptic curve, these functions model the operation of converting to/from a group element using the

value of the 𝑥 coordinate.

The scheme relies on two group element parameters P and Q. The construction is shown in List-

ing 36. The function in this listing also takes an additional nat parameter that de୮ୢnes the random

seed. The security de୮ୢnition is provided in Listing 37. Because this is a simple exercise, I use a secu-

rity de୮ୢnition that is specialized to this scheme, and this de୮ୢnition matches the security de୮ୢnition

provided by Brown and Gjøsteen. In this de୮ୢnition, an adversary that has not knowledge of the ini-

tial state of the PRG should be unable to distinguish the new PRG state and output from uniformly

random group elements.

In Listing 37, P is a ୮ୢxed global parameter, and Q is selected at random. The fact that Q is random

is of critical importance to this proof. In the standardized version of this scheme, Q is a ୮ୢxed global

parameter instead of a randomly-selected value. I designed the model so that Q is a parameter to the

construction and security de୮ୢnition, and therefore I can use the same functions in both versions

of this model. The function DRBG_P provides the idealized version of the model by generating Q at

random.

Definition DRBG(P Q : GroupElement)(t : nat) : (GroupElement * GroupElement ) :=
let s := x (P ^ t) in (P ^ s, Q ^ t).

Listing 36: Dual ECDRBGConstruction

The security of Dual EC DRBG is based on the hardness of the decisional Di୭୮ୢe-Hellman (DDH)

problem and a variant of the discrete logarithm problem (DLP). In order to focus on the relevant

parts of this exercise, I de୮ୢne an intermediate game G2 and simply declare that the distance between

this game and DRBG_GA is equal to the advantage of some adversary against this variant of the DLP.

69



Definition DRBG_GA Q :=
seed <-$ RndNat order;
[s1, v1] <-2 DRBG P Q seed;
b <-$ A (Q, s1, v1);
ret b.

Definition DRBG_GB Q :=
x2 <-$ RndNat order;
x3 <-$ RndNat order;
b <-$ A (Q, (P^x2), (P^x3));
ret b.

Definition DRBG_P (f : GroupElement -> Comp bool) :=
x <-$ RndNat order;
Q <- P ^ x;
f Q.

Definition DRBG_Advantage := | Pr[DRBG_P DRBG_GA] - Pr[DRBG_P DRBG_GB] |.

Listing 37: Security Definition for Dual ECDRBG

This intermediate game is shown in Listing 38.

Definition G2 Q :=
seed <-$ RndNat order;
[s1, v1] <-2 (seed, Q ^ seed);
b <-$ A (Q, (P ^ s1), v1);
ret b.

Definition xLogAdvantage := | Pr[DRBG_P DRBG_GA] - Pr[DRBG_P G2] |.

Listing 38: Dual ECDRBG Intermediate Game andDLPDefinition

Now I can show that the distance between this intermediate game and DRBH_GB is equal to the

advantage of some adversary against the DDH problem. The statement of this theorem and the

୮ୢnal security result for this scheme are shown in Listing 39.

Theorem DRBG_P_DH : | Pr[DRBG_P G2] - Pr[DRBG_P DRBG_GB] | ==
DDH_Advantage _ groupOp ident inverse _ g order A.

Theorem DRBG_P_secure : | Pr[DRBG_P DRBG_GA] - Pr[DRBG_P DRBG_GB] | <=
xLogAdvantage + DDH_Advantage _ groupOp ident inverse _ g order A.

Listing 39: Dual ECDRBG Security

This completes the proof. Now I turn my attention to the standardized version of this scheme,

in which Q is a global parameter rather than being chosen at random. To model this variant, I simply

70



use the function DRBG_S that specializes some other de୮ୢnition using this ୮ୢxed value of Q. Then I

try to prove that the distance between G2 and DRBG_GB is still equal to the DDH advantage. These

items are shown in Listing 40.

Definition DRBG_S (f : GroupElement -> Comp bool) := f Q.

Theorem DRBG_S_DH : | Pr[DRBG_S G2] - Pr[DRBG_S DRBG_GB] | ==
DDH_Advantage _ groupOp ident inverse _ g order A.

Listing 40: Standardized Variant of Dual ECDRBG

Of course, the proof from the idealized scheme simply does not work here. In order to unify with

the DDH de୮ୢnition, Qmust be generated at random. As a result of this mismatch, there can be no

proof of the statement shown in Listing 40. This means there is no way to reduce the security of this

scheme to the DDH, but there may still be some other reduction that is still possible.

If a person was trying to complete this proof, the failure to prove the theorem in Listing 40

should be illuminating. The inability to prove this fact may actually stem from a weakness in the

scheme. The developer may then wonder if the scheme really is secure for all choices of P and Q.

This is an incredibly strong statement, and the developer would probably suspect that there is some

choice of these parameters that renders this scheme insecure. In fact, Shumow and Ferguson de-

scribe a way in which the parameters can be carefully chosen that gives the party that chooses the

parameters the ability to determine the state of the PRG and determine its output.

5.4 Cঘগঌকঞজ঒ঘগ

In this chapter, I provided several complete examples that illustrate how FCF can be used to develop

proofs of security for cryptographic schemes, and an example that demonstrates how FCF can be

used to locate ୯୳aws in such schemes. These are all relatively simple examples, and Chapter 6 contains

a complete proof for a complex searchable symmetric encryption scheme.

71



6
Searchable Symmetric Encryption

This chapter demonstrates the viability of using FCF to construct formal proofs of security for com-

plex cryptographic schemes by proving the security of the e୭୮ୢcient Searchable Symmetric Encryp-

tion (SSE) scheme of Cash et al. 25 Using this SSE scheme, a client can store a large database on an

untrusted server, and the server can e୭୮ୢciently query the database on behalf of the client without

learning the contents of the database or the query. This scheme is accompanied by a proof of secu-

rity on paper, but we can gain greater assurance of the security of this scheme by developing a mech-

72



anized proof of security in FCF. Note that the scheme we veri୮ୢed in this e୭fort is exactly the scheme

described by Cash et al., and my formal proof was inspired by the proof presented in the paper.

Following the release of EasyCrypt9, a team of cryptographers and programming language ex-

perts attempted 35 to prove the security of a Private Information Retrieval (PIR) system 29 which can

be viewed as a predecessor to the SSE scheme of Cash et al. This e୭fort did not produce a complete

proof because certain required facts could not be proven in EasyCrypt. Speci୮ୢcally, it was impossi-

ble at the time to prove particular equivalences involving loop fusion and order permutation within

a loop without modifying the EasyCrypt code to accept these equivalences.

EasyCrypt has seen signi୮ୢcant improvement since its release, and a proof of security for a greatly

simpli୮ୢed form of this PIR scheme44 has been completed in EasyCrypt. In parallel, FCF was devel-

oped in order to ୮ୢnd a more general solution to the problem of “missing” theory in cryptographic

frameworks such as EasyCrypt. Due to the foundational nature of FCF, any required theorem can

be formally derived from the semantics without increasing the trusted computing base. I rely on this

trustworthy extensibility of FCF to develop the additional theory required to complete the proof

described in this paper.

The proof described here is among the most complex mechanized cryptographic proofs that have

been developed to date. Table 6.1 (in Section 6.4) summarizes the complexity of this proof, which

comprises several cryptographic reductions including over 14,000 lines of Coq code and 58 interme-

diate games. This development e୭fort also produced a signi୮ୢcant amount of FCF theory related to

loop transformations, hybrid arguments, sampling without replacement, and constructions involv-

ing repeated independent trials. I added this theory to the standard library of FCF in order to assist

with future proof development e୭forts.

73



6.1 S঎ঊছঌ঑ঊঋক঎ Sঢখখ঎ঝছ঒ঌ Eগঌছঢঙঝ঒ঘগ Pছঘঘএ Oট঎ছট঒঎ঠ

This section informally introduces Searchable Symmetric Encryption and describes the strategy used

in the proof of security. An SSE scheme provides a mechanism to encrypt a database and a list of

queries. These encryptions are given to an untrusted party who is able to produce encryptions of

the result of executing the queries on the database while learning very little about the database or

queries. We call the party that knows the unencrypted database the client, and the untrusted party

that carries out queries on behalf of the client is the server. A database is simply a list of identi୮ୢers

and a set of keywords associated with each identi୮ୢer. Each identi୮ୢer can be used to retrieve some

other object in an encrypted database, but this operation is beyond the scope of the SSE de୮ୢnitions.

The SSE scheme is constructed from an abstraction called a Tuple Set (or TୖSet) that behaves

like a secure associative array. In this proof, I consider single-keyword SSE (SKSୖSSE), in which

each query is a single keyword. Roughly speaking, this scheme works by encrypting each value us-

ing a key derived from the appropriate keyword, and then storing the ciphertexts in a TୖSet. The

server can perform a query by looking up the speci୮ୢed keyword in the TୖSet and giving the result-

ing ciphertexts to the client. Cash et al. describe several variants of their SSE scheme which support

increasingly sophisticated queries, and SKSୖSSE is the simplest of these variants.

Figure 6.1 describes the structure of the security proof. Each node in the diagram is an object that

is conjectured (in the case of PRF) or proved to exist, and each arrow is a reduction that proves the

existence of some construction. Many of these reductions are complex arguments involving large

sequences of games. In particular, the TୖSet construction and the proofs related to this construction

are quite complex, and the TୖSet abstraction hides the complexity of this construction in order to

make the SSE proof simpler. This is a standard technique in cryptography that is even more impor-

tant when developing mechanized proofs. The abstraction and modular construction features of

Coq, which are inherited by FCF, are very useful for developing these sorts of proofs.

74



The lef୴ side of the diagram shows the proof that the TୖSet construction is secure and correct, and

the right side is the proof of security of the SKSୖSSE scheme. In the TୖSet proof, I begin by showing

that if some function 𝑓 is a PRF, then it is an iterated PRF as described in Section 3.3. From a PRF

and an iterated PRF, I show that a simpli୮ୢed “single-trial” form of the TୖSet construction is correct

and secure. Then I use some reusable arguments to obtain the correctness and security of the “full”

TୖSet construction. More information about the TୖSet security and correctness proofs can be found

in Sections 6.3.1 and 6.3.2, respectively.

The proof of security for SKSୖSSE requires an INDୖCPA encryption scheme, which can be for-

mally derived from a PRF as shown in Section 5.2. I then show that this encryption scheme is an

iterated encryption scheme in a manner similar to the iterated PRF reduction. This fact also follows

from the hybrid argument described in Section 3.3. The I show that the SKSୖSSE scheme is secure as

long as the TୖSet is correct and secure, the encryption scheme used is an iterated INDୖCPA encryp-

tion scheme, and the function used to derive encryption keys is a PRF. I expand on this part of the

proof in Section 6.2.

..Iterated
PRF

. PRF. Encryption.

Single-Trial
TୖSet

.

Iterated
Encryption

.

TୖSet

.

SKSୖSSE

.........

Figure 6.1: SSE Security Proof Structure

6.2 S঒গঐক঎ K঎ঢঠঘছ঍ S঎ঊছঌ঑ঊঋক঎ Sঢখখ঎ঝছ঒ঌ Eগঌছঢঙঝ঒ঘগ এছঘখ Tঞঙক঎ S঎ঝজ

In this section, I present the formal de୮ୢnitions related to SSE and Tuple Sets, and formally prove the

security of the SKSୖSSE scheme of Cash et al. An SSE scheme consists of an EDBSetup function that

75



takes a database and produces an encrypted database and a key, and a SearchProtocol that uses a

key and a query known to the client and an encrypted database known to the server to produce a list

of identi୮ୢers and a transcript.

6.2.1 Nঘগ-A঍ঊঙঝ঒ট঎কঢ S঎ঌঞছ঎ SSE

I use a non-adaptively secure de୮ୢnition for SSE (Listing 41), in which an adversary produces a database

and the entire list of queries up front. The de୮ୢnition is given as an indistinguishability between a

pair of games parameterized by a leakage function L. The leakage function describes what informa-

tion is allowed to leak to the adversary, and this function must be inspected carefully in order to

determine if the leakage is acceptable. The real game uses the actual EDBSetup and SearchProto-

colwhile the ideal game uses a simulator that is only given the result of the leakage function applied

to the unencrypted database and list of queries. The SSE scheme is non-adaptively secure if the dis-

tance between these two games, SSE_NA_Advantage, is small.

In this de୮ୢnition, the adversary is divided into two separate procedures, A1, and A2which are

allowed to share state. In the corresponding de୮ୢnition provided by Cash et al., the second adver-

sary procedure is also given the list of identi୮ୢers resulting from the queries in order to model the

assumption that the client will immediately give the identi୮ୢers to the server to retrieve the required

objects. For simplicity, I remove this assumption and only give the search transcript to the adversary.

Because the correct identi୮ୢers are already known to the adversary, these de୮ୢnitions are equivalent

under the assumption that the SSE scheme is (computationally) correct.

6.2.2 TୖS঎ঝজ

ATୖSet is a primitive that associates values with keywords, and allows retrieval of all the values asso-

ciated with some keyword. A TୖSet di୭fers from a standard associative array in that the TୖSet scheme

76



Definition SSE_Sec_NA_Real :=
[db, q, s_A] <-$3 A1;
[k, edb] <-$2 EDBSetup db;
ls <-$ foreach (x in q) (SearchProtocol edb k x);
A2 s_A edb (snd (split ls)).

Definition SSE_Sec_NA_Ideal :=
[db, q, s_A] <-$3 A1;
leak <-$ L db q;
[edb, t] <-$2 Sim leak;
A2 s_A edb t.

Definition SSE_NA_Advantage :=
| Pr[SSE_Sec_NA_Real] - Pr[SSE_Sec_NA_Ideal] |.

Listing 41: SSENon-Adaptive Security

attempts to hide as much as possible about the values in the TୖSet and the relationship between key-

words and values. A server that possesses a TୖSet structure but not the key for that structure should

learn very little about the contents of the structure. The server can also query the structure on behalf

of a client that knows the TୖSet key, and in the process the server should learn very little other than

the set of values returned by the query.

A TୖSet scheme is composed of three procedures: TSetSetup, TSetGetTag, and TSetRe-

trieve. TSetSetup takes a database and returns a TୖSet and a secret key. Database keywords are

elements of {0, 1}∗ and identi୮ୢers are elements of {0, 1}𝜆. TSetGetTag takes a secret key and out-

puts a tag. TSetRetrieve takes a TୖSet and a tag and returns a list of identi୮ୢers.

The security of the SSE scheme relies on both the security and the correctness of the TୖSet scheme.

The formal correctness de୮ୢnition (Listing 42) is computational and non-adaptive. In this de୮ୢni-

tion, the adversary chooses the database and list of keywords, and the correct answers are compared

to the answers produced using the TୖSet. If the TୖSet is correct, then the probability that these an-

swers di୭fer (AdvCor) is small.

The non-adaptive security of a TୖSet scheme is de୮ୢned as a real/ideal indistinguishability param-

eterized by a leakage function L as shown in Listing 43. If the TୖSet is secure, then TSetAdvantage

77



Definition AdvCor_G :=
[t, q] <-$2 A;
[tSet, k_T] <-$2 TSetSetup t;
tags <-$ foreach (x in q) (TSetGetTag k_T x);
t_w <- foreach (x in tags) (TSetRetrieve tSet x);
t_w_correct <- foreach (x in q)

(arrayLookupList _ t x);
ret (t_w != t_w_correct).

Definition AdvCor := Pr[AdvCor_G].

Listing 42: T-Set Non-Adaptive Computational Correctness

should be small. Note that the correct answers are given to the simulator in the ideal game, implying

that this information is allowed to leak to the adversary. The TୖSet only hides information about

the queries and the non-queried portions of the database.

Definition TSetReal :=
[t, q, s_A] <-$3 A1;
[tSet, k_T] <-$2 TSetSetup t;
tags <-$ foreach (x in q) (TSetGetTag k_T x);
A2 s_A (tSet, tags).

Definition TSetIdeal :=
[t, q, s_A] <-$3 A1;
T_qs <- foreach (x in q) (lookupAnswers t x);
[tSet, tags] <-$2 Sim (L t q) T_qs;
A2 s_A (tSet, tags).

Definition TSetAdvantage :=
| Pr[TSetReal] - Pr[TSetIdeal] |.

Listing 43: T-Set Security Definition

6.2.3 INDୖCPA Eগঌছঢঙঝ঒ঘগ ঊগ঍ PRFজ

The ୮ୢnal elements required to construct the SSE scheme are an INDୖCPA encryption scheme and

a pseudorandom function. The TୖSet is allowed to leak information about values returned by

queries, so the SSE scheme stores ciphertexts in the TୖSet instead of indices. Because the encryp-

tion is INDୖCPA, the only information leaked is the number of values returned by each query. The

encryption key is determined by a pseudorandom function applied to the appropriate keyword. I

78



use adaptively-secure encryption and PRFs in this proof merely for convenience, and it would be

possible to complete this proof using non-adaptive forms of these assumptions.

The particular INDୖCPA de୮ୢnition that is used as an assumption is shown in Listing 44. In this

de୮ୢnition, EncryptOracle is an oracle that returns an encryption of any plaintext it receives, and

EncryptNothingOracle takes a plaintext and returns an encryption of some default value (e.g.

0𝜆). The scheme encrypts each entry using a key derived from the keyword, so the proof actually

requires an iterated form of INDୖCPA in which the adversary is allowed to interact with several en-

cryption oracles, each with a di୭ferent key. I can show that any INDୖCPA encryption scheme is also

an iterated INDୖCPA encryption scheme (security de୮ୢnition omitted) using the hybrid argument

described in Section 3.3. The adaptively-secure PRF de୮ୢnition used in the proof is shown in Listing

45.

Definition IND_CPA_SK_O_G0 :=
key <-$ KeyGen;
[b, _] <-$2 A (EncryptOracle key) tt;
ret b.

Definition IND_CPA_SK_O_G1 :=
key <-$ KeyGen;
[b, _] <-$2 A (EncryptNothingOracle key) tt;
ret b.

Definition IND_CPA_SK_O_Advantage :=
| Pr[IND_CPA_SK_O_G0] - Pr[IND_CPA_SK_O_G1] |.

Listing 44: Iterated IND-CPA Encryption

6.2.4 SKSୖSSE Cঘগজঝছঞঌঝ঒ঘগ

The formalization of the SKSୖSSE construction is shown in Figure 46. In this ୮ୢgure, Enc and Dec

are the encryption and decryption procedures for an INDୖCPA encryption scheme, and F is a PRF.

The EDBSetup routine iterates over all keywords in the database (obtained using the toW function)

and encrypts the indices associated with each keyword under a key derived from that keyword.

79



Definition f_oracle(k : Key)(x : unit)(d : D) :=
ret (f k d, tt).

Definition PRF_G_A : Comp bool :=
k <-$ RndKey;
[b, _] <-$2 A (f_oracle k) tt;
ret b.

Definition PRF_G_B : Comp bool :=
[b, _] <-$2 A (RndR_func) nil;
ret b.

Definition PRF_Advantage :=
| Pr[PRF_G_A] - Pr[PRF_G_B] |.

Listing 45: Adaptively-Secure PRF

Then TSetSetup is used to construct a TୖSet from this encrypted database. In this procedure,

lookupInds returns all the indices associated with a keyword. The search protocol uses TSetGet-

Tag and TSetRetrieve to get the encrypted indices, and then decrypts them.

Definition SKS_EDBSetup_wLoop db k_S w :=
k_e <- F k_S w;
inds <- lookupInds db w;
t <-$ foreach (x in inds) (Enc k_e x);
ret (w, t).

Definition SKS_EDBSetup(db : DB) :=
k_S <-$ {0, 1}^lambda;
t <-$ foreach (x in (toW db))

(SKS_EDBSetup_wLoop db k_S x);
[tSet, k_T] <-$2 TSetSetup t;
ret ((k_S, k_T), tSet).

Definition SKS_Search tSet k w :=
[k_S, k_T] <-2 k;
(* client *) tag <-$ TSetGetTag k_T w;
(* server *) t <- TSetRetrieve tSet tag;
(* client *) inds <- map (Dec (F k_S w)) t;
ret (inds, (tag, t)).

Listing 46: SKS-SSE Construction

80



6.2.5 Pছঘঘএ ঘএ S঎ঌঞছ঒ঝঢ এঘছ SKSୖSSE

Listing 47 contains the leakage function and simulator used in the proof of security. Note that L_T

is the leakage function for the TୖSet. Informally, this scheme leaks the number of indices associated

with each queried keyword, as well as the result of the TୖSet leakage function applied to the structure

of the database (which is essentially the number of indices associated with each keyword) and the

list of queries. The simulator for this proof uses Sim_T, which is the TୖSet simulator. In this listing,

zeroVector lambda is a vector of length lambda containing all zeroes, and combine is the Coq

function that converts a pair of lists to the corresponding list of pairs.

Definition SKS_resultsStruct db w :=
k_e <-$ {0, 1}^lambda;
inds <- lookupInds db w;
foreach (_ in inds)

(Enc k_e (zeroVector lambda)).

Definition L (db : DB) (qs : list Query) :=
t_s<-$ foreach (x in (toW db))

(SKS_resultsStruct db x);
t <- combine (toW db) t_s;
leak_T <- L_T t qs;
ret (leak_T, map (arrayLookupList t) qs).

Definition SKS_Sim leak :=
[leak_T, struct] <-2 leak;
[tSet, tags] <-$2 Sim_T leak_T struct;
ret (tSet, (combine tags struct)).

Listing 47: Leakage Function and Simulator for SKS-SSE Proof

The security proof is completed using a sequence of games (omitted). The exact security result

is provided in Listing 48. The result refers to procedures TSetCor_A, TSetSec_A1, TSetSec_A2,

PRF_A, Enc_A1, and Enc_A2 (all omitted), which form the constructed adversaries against TୖSet

correctness and security, the PRF, and the INDୖCPA encryption scheme. Enc_A1 is a family of pro-

cedures, and the hypothesis states that IND_CPA_Adv is an upper bound on the advantage of all pro-

cedures in this family. The term maxKeywords represents the maximum number of keywords that

81



may be contained in the database and queries produced by A1, and this term appears in the bounds

due to the application of the hybrid argument as described in Section 6.2.3.

Theorem SKS_Secure :
(forall i, IND_CPA_SK_O_Adv ({0, 1}^lambda) Enc

(Enc_A1 i) Enc_A2 <= IND_CPA_Adv) ->
SSE_NA_Advantage SKS_EDBSetup

SKS_Search A1 A2 L SKS_Sim <=
AdvCor TSetSetup TSetGetTag TSetRetrieve

TSetCor_A +
TSetAdvantage TSetSetup TSetGetTag L_T

TSetSec_A1 TSetSec_A2 Sim_T +
PRF_Advantage (Rnd lambda) (Rnd lambda) F PRF_A +
maxKeywords * IND_CPA_Adv.

Listing 48: Exact Security of SKS-SSE Scheme

6.3 Tঞঙক঎ S঎ঝ Iগজঝঊগঝ঒ঊঝ঒ঘগ

This section describes the the e୭୮ୢcient TୖSet instantiation provided by Cash et al. as well as the for-

mal proof of security and correctness of this construction. I slightly simplify the model of the TୖSet

construction because I only prove non-adaptive security of the scheme. Instead of two PRFs and a

random oracle, I model the scheme using only two PRFs. The random oracle is included to provide

adaptive security, and it is only used when composed with one of the other functions that I model as

a PRF. I can simplify the model by combining these two functions into one and assuming that the

function is a PRF.

The TୖSet is a hash table with 𝐵 buckets, each with at most 𝑆 entries. The parameters 𝐵 and 𝑆

are selected based on the size of the input structure 𝑇 in a way that the probability of constructing

the TୖSet without running out of space in any bucket is non-negligible. A PRF 𝐹 is used to deter-

mine the bucket into which each value will be placed, as well as a label that can be used to determine

the keyword associated with the value, and a key used to encrypt the value when it is placed in the

TୖSet. Another PRF 𝐹̄ is used to map keywords to tags. The security of the TୖSet scheme is derived

82



from the assumed indistinguishability of 𝐹 and 𝐹̄ from random functions.

Definition TSetSetup_tLoop stag length acc e :=

[tSet, free] <- acc;

[i, s_i] <- e; [b, L, K] <- F stag i;

free_b <- nth b free nil;

j <-? ($ free_b) ;

free <- replace free b (remove free_b j);

bet <- (S i) != length;

newRecord <- (L, (bet :: s_i) xor K);

tSet <- tSetUpdate tSet b j newRecord;

ret (tSet, free).

Definition TSetSetup_wLoop T k_T acc w :=

[tSet, free] <- acc;

stag <- F_bar k_T w;

t <- lookupAnswers T w;

ls <- combine (allNatsLt (length t)) t;

loop_over ((tSet, free), ls)

(TSetSetup_tLoop stag (length t)).

Definition TSetSetup_trial T :=

k_T <-$ {0, 1} ^ lambda;

loopRes <-$ loop_over ((nil, initFree), (toW T))

(TSetSetup_wLoop T k_T) ;

ret (loopRes, k_T).

Definition TSetSetup t :=

[res, k_T] <-$ Repeat (TSetSetup_trial t)

(fun p => isSome (fst p));

ret (getTSet res, k_T).

Listing 49: T-Set Setup Routine

In order to organize the presentation and

proof, I separate the TSetSetup routine into a

number of subroutines. This routine is com-

posed of a nested loop, so I provide a procedure

for each loop body. Each loop body is a func-

tion that takes an accumulator and the next

input value and returns the resulting value for

the accumulator. The loop_over operator

is simply notation for folding the procedure

over some input list. The setup routine may

fail if some bucket in the hash table is ୮ୢlled,

so the setup is repeated in independent trials

until a trial succeeds. In this listing, nth is a

Coq function that returns the value at a cer-

tain position in a list, remove removes the ୮ୢrst

occurrence of some value in a list, replace

replaces the value in a list at a speci୮ୢed posi-

tion with another value, tSetUpdate sets the

value in the TୖSet at the speci୮ୢed location to

the provided value, lookupAnswers returns

the indices associated with some keyword in the

TୖSet, allNatsLt returns all the natural num-

bers (in increasing order) less than a speci୮ୢed

number, and initFree initializes a “free list”

83



that is used to keep track of which locations in

each bucket are unoccupied. The ($ free_b) expression in the TSetSetup_tLoop construction

denotes sampling from the distribution corresponding to the list free_b. This sampling routine

and notation are provided by the FCF standard library. Because this sampling may fail if the list is

empty, the function perform the sampling inside aMaybemonad as indicated by the arrow <-?,

and the TSetSetup_tLoop returns a value in an option type.

The TSetGetTag procedure (Listing 50) simply produces a tag for a keyword using the 𝐹̄ PRF

and the key for the TୖSet.

Definition TSetGetTag (k_T : Bvector lambda) w :=
ret (F_bar k_T w).

Listing 50: T-Set Get Tag Routine

Definition TSetRetrieve_tLoop tSet stag i :=
[b, L, K] <-3 F stag i;
B <- nth b tSet nil;
t <- arrayLookupOpt _ B L;
match t with

| None => None
| Some u =>

v <- u xor K;
bet <- Vector.hd v;
s <- Vector.tl v;
Some (s, bet)

end.

Fixpoint TSetRetrieve_h tSet stag i (fuel : nat) :=
match fuel with

| O => nil
| S fuel’ =>

match (TSetRetrieve_tLoop tSet stag i) with
| Some (v, bet) =>

v :: (if (bet) then (TSetRetrieve_h tSet stag (S i) fuel’) else nil)
| None => nil

end
end.

Definition TSetRetrieve tSet stag :=
TSetRetrieve_h tSet stag O maxMatches.

Listing 51: T-Set Retrieve Routine

84



The TSetRetrieve procedure (Figure 51) searches through the TୖSet to ୮ୢnd all the entries

matching a keyword. Because Coq requires me to model this procedure as a total function, I assume

that there is a maximum number of entries (maxMatches) for any keyword, and we use this num-

ber as “fuel”. The loop body searches for the 𝑖𝑡ℎ value matching the tag, and returns an optional

value and an indication of whether there are additional entries matching the tag. This loop body is

iterated until it indicates that there are no more values, or it runs out of fuel.

6.3.1 TୖS঎ঝ S঎ঌঞছ঒ঝঢ

The simulator used in the security proof is shown in Listing 52. This proof is complicated by the

fact that the real setup routine and the simulator performmultiple trials in an attempt to create

the TୖSet. So I begin by proving the security of a modi୮ୢed form of the scheme in which only one

attempt is made to construct the TୖSet. Then I combine this result with some additional arguments

in order to obtain the proof of security for the full TୖSet scheme.

S঒গঐক঎-Tছ঒ঊক TୖS঎ঝ S঎ঌঞছ঒ঝঢ

The Single-Trial TୖSet security proof is a straightforward, though complicated, sequence of games

in which I replace PRFs with random values and use the resulting randomness to show that the out-

put is independent from the input. The ୮ୢrst complication relates to applying the PRF de୮ୢnition

to 𝐹 in that some of the PRF keys are the same as the tags that are given to the adversary at the end

of the computation. The PRF de୮ୢnition only applies when the PRF key is not given to the adver-

sary, so I must split the TୖSet initialization procedure into two parts: ୮ୢrst it adds entries related to

the keywords that are queried by the adversary, then it adds the rest of the entries. The ୮ୢrst part of

this procedure already matches the ideal functionality, and I only apply the PRF assumption to the

entries created during the second part of the procedure. Another complication is that the initializa-

85



Definition randomTSetEntry acc :=
label <-$ {0, 1} ^ lambda;
value <-$ {0, 1} ^ (S lambda);
[tSet, free] <- acc;
b <-$ [0 .. B);
free_b <- nth b free nil;
j <-? ($ free_b);
free <- replace free b (remove free_b j) nil;
tSet <- tSetUpdate tSet b j (label, value);
ret (tSet, free).

Definition TSetSetup_Sim_wLoop tSet_free e :=
[tSet, free] <- tSet_free;
[stag, t] <- e;
ls <- combine (allNatsLt (length t)) t;
loop_over ((tSet, free), ls)

(TSetSetup_tLoop stag (length t)).

Definition TSet_Sim_trial n ts :=
tags <-$ foreach (_ in ts) ({0, 1} ^ lambda);
loopRes <-$ loop_over

((nil, initFree), (combine tags ts))
TSetSetup_Sim_wLoop;

loopRes <-$ loop_over
(loopRes, allNatsLt (n - length (flatten ts)))
(fun acc i => randomTSetEntry acc);

ret (loopRes, tags).

Definition TSet_Sim leak ls :=
[_, ts] <- split ls;
[trialRes, tags] <-$

Repeat (TSet_Sim_trial leak ts)
(fun p => isSome (fst p));

ret (getTSet trialRes, tags).

Listing 52: T-Set Simulator

tion procedure places each record in a random location in the correct bucket. So it is necessary to

perform game manipulations in the presence of sampling without replacement, and the games must

keep track of the unused locations in each bucket.

The intermediate game code is omitted, but a diagram of the sequence is provided in Figure 6.2.

The box around the top half marks a portion of the proof that is reused as an argument in the cor-

rectness proof described in Section 6.3.2. Each equivalence in the diagram is labeled to indicate the

argument or assumption used. Equivalences labeled 𝑆 are simple transformations such as unfold-

ing de୮ୢnitions, inlining statements, and removing unused values or statements. 𝐹 indicates a loop

86



..Real. S1. S2. S3. S4.

S5

.

S6

.

S7

.

S8

.

S9

.

S10

.

S11

.

S12

.

S13

.

S14

.

S15

.

S16

.

S17

.

S18

.

Ideal

.
=𝑆

.
=𝐹

.
=𝐴

.
=𝐷

.

=𝑂

.

≈𝑃

.

=𝑅

.

=𝐿

.

≈𝑃

.

=𝑅

.

=𝐹

.

=𝐼

.

=𝑆

.

=𝐷

.

=𝑆

.

=𝑆

.

=𝐹

.

=𝑆

.

=𝑆

Figure 6.2: Single-Trial T-Set Security Games

୮ୢssion transformation such as the one described in Chapter 3. 𝐴 describes an information augmen-

tation transformation in which additional information is added to a data structure without chang-

ing the results of the game. Such a transformation enables “ghost state” reasoning in which this

additional information can be used in program logic judgments. For example, a list of ciphertexts

could be augmented with a list of plaintexts and keys used in the encryption. Then a program logic

judgment could state that the plaintext is equal to the value obtained by decrypting the ciphertext

with the key. 𝐷 is a dimension reduction where a data structure of dimension 𝑛 is represented us-

ing a data structure of dimension 𝑛 − 1. A dimension reduction may be performed to replace a

2-dimensional data structure with a list in order to apply a theorem related to list processing. 𝑂 is a

non-trivial change to the order in which statements are executed in the game. The TୖSet construc-

tion stores entries in a random location in each bucket, requiring sampling without replacement to

determine the location of each entry. In some transformations, I change the order that entries are

added to the TୖSet in the presence of this sampling without replacement. 𝑅 equivalences replace

random function outputs with independent random values by showing that there are no duplicates

in the input to the function. In 𝐿 transformations, I show that folding the function 𝑓 over a list is

equivalent to folding 𝑓 over the ୮ୢrst 𝑛 elements of the list, and then folding 𝑓 over the rest of the

87



list. 𝐼 equivalences show that certain values are independent of each other by applying a one-time

pad argument.

The statement of security for single-trial TୖSets is shown in Listing 53. In this listing, TSet-

Setup_once and TSet_Sim_once are procedures that try to create a TୖSet in a single attempt us-

ing the corresponding trial routines. These routines produce an empty TୖSet if the trail fails. The

procedures TSet_PRF_A1, TSet_PRF_A2, TSet_IPRF_A1, and TSet_IPRF_A2, are e୭୮ୢcient adver-

saries against the PRFs constructed from A1 and A2. The proof uses an iterated PRF as described in

Chapter 3, and TSet_IPRF_A1 and TSet_IPRF_A2 form a family of adversaries constructed using

di୭ferent distributions from the appropriate hybrid distribution family. This theorem assumes that

F_Adv is an upper bound on the advantage of all of these adversaries against the PRF F. The theo-

rem also assumes that F_bar_Adv is an upper bound on the advantage of a particular constructed

adversary against the PRF F_bar. Similar to the proof in Section 6.2.5, the database and queries

provided by the adversary contain at most maxKeywords keywords, and this term appears in the

bounds due to the application of the hybrid argument.

Theorem TSet_once_secure :
(forall i, PRF_NA_Advantage

({0,1}^lambda) (RndF_Range) F
(TSet_IPRF_A1 i) TSet_IPRF_A2 <= F_Adv) ->

PRF_NA_Advantage
({0,1}^lambda) ({0,1}^lambda) F_bar
TSet_PRF_A1 TSet_PRF_A2 <= F_bar_Adv ->

TSetAdvantage TSetSetup_once TSetGetTag
L_T TSet_Sim_once A1 A2 <=

<= F_bar_Adv + maxKeywords * F_Adv.

Listing 53: Single-Trial T-Set Security

T঑঎ “Oগ঎ ঝঘMঊগঢ” Aছঐঞখ঎গঝ

I employ a couple of non-trivial reusable arguments in order to derive security of the full TୖSet

scheme from the proof of security of the Single Trial T-Set scheme. The ୮ୢrst of these arguments is

88



the “One toMany” argument (Listing 54), which is a special case of the hybrid argument described

in Section 3.3 in which the same argument is repeated a ୮ୢxed number of times and the results are

collected in a list.

Definition DistMult_G(c : A -> Comp B) :=
[a, s_A] <-$2 A1;
b <-$ foreach (x in (forNats n)) ((c a);
A2 s_A b.

Definition DistMult_Adv :=
| Pr[DistMult_G c1] - Pr[DistMult_G c2] |.

Theorem DistSingle_impl_Mult :
DistMult_Adv c1 c2 A1 A2 n <=

n * (DistSingle_Adv c1 c2 B1 B2).

Listing 54: TheOne toMany Theoreom

T঑঎ “Mঊগঢ ঝঘ Cঘছ঎” Aছঐঞখ঎গঝ

........................

Figure 6.3: Illustration

of “Many to Core”

Argument

The next argument applies to any pair of probabilistic computations 𝑐1 and

𝑐2 that produce values of type 𝐵. There is also some predicate 𝑃 on val-

ues of type 𝐵 that de୮ୢnes the “core” of the distributions corresponding to

𝑐1 and 𝑐2. This argument shows that if any e୭୮ୢcient adversary 𝐴 can e୭fec-

tively distinguish 𝑐1 from 𝑐2 when given a single value from 𝑐1 or 𝑐2 such that

𝑃(𝑏) = 𝑡𝑟𝑢𝑒, then there exists an e୭୮ୢcient adversary 𝐴ດ that can e୭fectively

distinguish 𝑐1 from 𝑐2 when given (polynomially) many samples from one

of the distributions. An additional condition required for this fact to hold is

that the total probability mass of the core is not too small. The statement of this argument is shown

in Listing 55, where k1 and k2 represent the probability mass of the core of c1 and c2, respectively.

The proof of this fact is intuitive, and is illustrated in Figure 6.3. If the core of the distribution

is su୭୮ୢciently large, and if enough samples are taken from the distribution, then it is likely that at

least one of these samples will fall within the core of the distribution. The constructed adversary 𝐴ດ

89



Definition RepeatCore_G(c : A -> Comp B) :=
[a, s_A] <-$2 A1;
b <-$ Repeat (c a) P;
A2 s_A b.

Definition RepeatCore_Adv :=
| Pr[RepeatCore_G c1] - Pr[RepeatCore_G c2] |.

Theorem DistMult_impl_RepeatCore :
RepeatCore_Adv P c1 c2 A1 A2 <=

DistMult_Adv c1 c2 A1 DM_RC_B2 n +
(1 - k1)^n + (1 - k2)^n.

Listing 55: TheMany to Core Theoreom

samples the distribution 𝑛 times and gives the ୮ୢrst “hit” in the core of the distribution to 𝐴 which it

uses to determine the source of the sample. When a hit is obtained, the distribution observed by 𝐴 is

identical to the distribution in which only the core is sampled. These distributions only di୭fer when

no hit is obtained af୴er 𝑛 attempts, but this event has negligible probability in 𝑛.

Fঞকক TୖS঎ঝ S঎ঌঞছ঒ঝঢ

I obtain security of the full TୖSet scheme by combining the arguments in the previous sections. In

order to apply the “Many to Core” argument, it must be shown that there is some positive 𝑘 ∈

ℚ, and the probability of successfully creating a TୖSet from a database supplied by the adversary

is at least 𝑘. This argument also requires that the simulator succeeds in one trial with probability

at least 𝑘. Because these facts depend on the choice of parameters 𝐵 and 𝑆 , and we leave them as

assumptions in the proof.

By combining the Single-Trial T-Set security proof with the assumptions related to 𝑘 described in

the previous paragraph, and with the arguments presented in Sections 6.3.1 and 6.3.1, I get the ୮ୢnal

security result in Listing 56. This theorem has the same assumptions as the “Single-Trial” security

theorem in Listing 53, and the bounds of that theorem are present in this one.

90



Theorem TSet_secure :
(forall i, PRF_NA_Advantage

({0,1}^lambda) (RndF_Range) F
(TSet_IPRF_A1 i) TSet_IPRF_A2 <= F_Adv) ->

PRF_NA_Advantage
({0,1}^lambda) ({0,1}^lambda) F_bar
TSet_PRF_A1 TSet_PRF_A2 <= F_bar_Adv ->

TSetAdvantage TSetSetup TSetGetTag
L_T TSet_Sim A1 A2

<= lambda * (F_bar_Adv + maxKeywords * F_Adv)
+ 2 * (1 - k)^lambda

Listing 56: T-Set Security

6.3.2 TୖS঎ঝ Cঘছছ঎ঌঝগ঎জজ

The TୖSet correctness proof has very similar structure to the security proof. The primary di୭ference

is that the ultimate goal is an inequality, rather than a proof that two values are “close.” The proof

uses slightly di୭ferent forms of the “One toMany” and “Many to Core” arguments, and there are

some interesting di୭ferences in the “single-trial” proof, which I highlight in this section.

S঒গঐক঎-Tছ঒ঊক TୖS঎ঝ Cঘছছ঎ঌঝগ঎জজ

The single-trial TୖSet security proof was simpli୮ୢed by the fact that security is obvious when ini-

tialization fails. The empty TୖSet resulting from an initialization failure clearly has no information

that the adversary could use to distinguish it from the simulator. This argument is not so simple in

the case of correctness, because an empty TୖSet is obviously not correct. So I instead prove that the

single-trial construction is conditionally correct. That is, a database and list of queries produced by

the adversary is highly unlikely to result in a TୖSet on the first initialization attempt that will pro-

duce an incorrect answer when queried. In the formalization of this de୮ୢnition (Listing 57), good is a

predicate that indicates whether the TSetSetup routine produced a valid TୖSet.

Notice that AdvCor_C_G uni୮ୢes with the real game in the TୖSet security de୮ୢnition (Listing

43). Since this de୮ୢnition is used in the single-trial TୖSet security proof, I could use the result of

91



Definition AdvCor_C_G :=
[t, q] <-$2 A;
[tSet, k_T] <-$2 TSetSetup t;
tags <-$ foreach (x in q)(TSetGetTag k_T x);
t_w <- foreach (x in tags) (TSetRetrieve tSet x);
t_w_correct <- foreach (x in q)

(arrayLookupList _ t x);
ret (good tSet && (t_w != t_w_correct)).

Definition AdvCor_C := Pr[AdvCor_C_G].

Listing 57: T-Set Conditional Correctness

this proof in the correctness proof to replace the game above with the ideal game from the secu-

rity proof. Unfortunately, the simulator in the security proof eliminates some of the information

required to show correctness. The security proof is a sequence of games, however, and I can use it to

replace the game above with any game in that sequence. There is a game about halfway through in

which many simpli୮ୢcations have been applied and the ୮ୢrst PRF outputs are replaced with random

values. So I save a signi୮ୢcant amount of e୭fort by reusing this result.

Next I perform a sequence of manipulations that simplify the TୖSet and make it look more like

the input database. For example, I put the values in the buckets in the same order as the input list

rather than in a random order, I store and retrieve actual values instead of encryptions of values, and

I make the structure one-dimensional. Then I replace the remaining PRF with a random function

and replace the outputs with random values. Finally, I show that the TୖSet is correct as long as there

are no collisions in these random values, and I derive an expression for the probability of such a

collision.

The sequence of games is diagrammed in Figure 6.4. The proof uses several of the same forms of

equivalence from the security proof, and only the new labels are described in this paragraph. The

equivalence labeled 𝑀 uses the part of the security proof surrounded by a box in Figure 6.2 as an

argument. In inequalities labeled 𝐶 , I modify the game so that the adversary can also win by ୮ୢnding

a collision during some operation. That is, the adversary can win by getting the game to produce a

92



collision, or by satisfying the original “win” condition when there is no such collision. This allows

a form of “identical until bad” reasoning for inequalities in which I can assume that there are no

collisions going forward, and I will calculate the probability of collision and add it to the bounds

in a later stage of the proof. 𝐸 represents an equivalence by functional injection, in which I replace

some operation on the outputs of an injective function with a related operation on the inputs of the

function. These equivalences may use the assumptions provided by 𝐶 steps, because if no collisions

are encountered while interacting with a function, then that function behaves like an injection. In

the ୮ୢnal 𝑁 equivalence of the correctness proof, I convert a simple collision-୮ୢnding game into the

corresponding probability expression 𝐵. The expression 𝐵 is negligible in 𝜆, and the bound on the

advantage of the adversary in this theorem is the sum of 𝐵 and the PRF advantage terms introduced

by the ≈ equivalences.

..AdvCor. C1. Real. S9. C2.

C3

.

C4

.

C5

.

C6

.

C7

.

C8

.

C9

.

C10

.

C11

.

C12

.

C13

.

C14

.

C15

.

C16

.

C17

.

C18

.

C19

.

B

.
=𝑆

.
=𝑆

.
≈𝑀

.
=𝑆

.

=𝐴

.

≤𝐶

.

=𝑂

.

=𝐷

.

=𝐸

.

=𝑆

.

=𝐸

.

=𝐸

.

=𝑆

.

=𝑆

.

≈𝑃

.

=𝑅

.

≤𝑆

.

=𝑁

.

=𝑆

.

=𝐶

.

=𝑆

.

=𝐴

Figure 6.4: Single-Trial T-Set Correctness Games

The single-trial conditional correctness result is in Listing 58. In this listing, maxMatches is the

maximum number of records matching any query, and maxKeywords is the maximum number of

keywords in the database and queries supplied by the adversary. This result is similar to the single-

93



trial security result because both proofs assume the functions F and F_bar are PRFs, and F is used

as an iterated PRF in both proofs. The ୮ୢrst term in the bounds of this theorem corresponds with

𝐵—the probability of a collision that would cause the result to be incorrect.

Theorem TSet_Correct_once :
(forall i, PRF_NA_Advantage

({0,1}^lambda) RndF_R F
(PRFI_A1 i) (PRFI_A2) <= F_Adv) ->

PRF_NA_Advantage
({0,1}^lambda) ({0,1}^lambda) F_bar
PRF_A1 PRF_A2 <= F_bar_Adv ->

AdvCor_C TSetSetup_once TSetGetTag
TSetRetrieve A1 A2 <=

(maxKeywords * (S maxMatches))^2 / 2 ^ lambda
+ maxKeywords * F_Adv + F_bar_Adv.

Listing 58: Single-Trial T-Set Conditional Correctness

Oগ঎ ঝঘMঊগঢ ঝঘ Cঘছ঎ Aছঐঞখ঎গঝজ

The “One toMany” and “Many to Core” arguments are slightly di୭ferent from the ones used in the

security proof. Rather than showing that the distance between two events is small, I only need to

show that the probability of some event is small under the assumption that the probability of some

other event is small. The required arguments are shown in Listing 59.

6.3.3 Fঞকক TୖS঎ঝ Cঘছছ঎ঌঝগ঎জজ

The full TୖSet correctness theorem is shown in Listing 60. This result is produced in a similar man-

ner to the security result—the single-trial result is combined with the “One toMany” and “Many to

Core” arguments along with some additional assumptions, and the single-trial bound appears in the

bound of the full TୖSet result. This proof also assumes a value k representing the probability that

the TSetSetup routine succeeds in any attempt.

94



Definition TrueSingle_G :=
a <-$ A1; b <-$ c a; ret (Q b).

Definition TrueMult_G :=
a <-$ A1;
bs <-$ foreach (x in (forNats n)) (c a);
ret (fold_left (fun b x => b || (Q x)) bs false).

Definition TrueRepeat_G :=
a <-$ A1; b <-$ Repeat (c a) P; ret (Q b).

Theorem TrueSingle_impl_Mult :
Pr[TrueMult_G n] <= n * Pr[TrueSingle_G].

Theorem TrueMult_impl_Repeat :
Pr[TrueRepeat_G] <=
Pr[TrueMult_G n] + (k ^ n).

Listing 59: One toMany to Core Inequality Arguments

Theorem TSet_Correct :
(forall i, PRF_NA_Advantage

({0,1}^lambda) RndF_R F
(PRFI_A1 i) (PRFI_A2) <= F_Adv) ->

PRF_NA_Advantage
({0,1}^lambda) ({0,1}^lambda) F_bar
PRF_A1 PRF_A2 <= F_bar_Adv ->

AdvCor TSetSetup TSetGetTag TSetRetrieve A1 A2 <=
(1 - k)^lambda + lambda *

((maxKeywords * (S maxMatches))^2 / 2 ^ lambda
+ maxKeywords * F_Adv + F_bar_Adv).

Listing 60: T-Set Correctness

6.4 Pছঘঘএ Eগঐ঒গ঎঎ছ঒গঐ

This proof was completed in approximately 6 months by a person with expert-level knowledge of

FCF and moderate knowledge of the SSE scheme in question. Most of this time was spent in the

“single-trial” security and correctness proofs. Table 6.1 provides the number of lines of Coq code

and the number of intermediate games for each proof. To determine the number of intermedi-

ate games, I count only those games that would be produced by a cryptographer when developing

the structure of the proof. In many cases, a high-level transformation is divided into several smaller

transformations, each with its own intermediate game. The games used in these smaller transfor-

95



mations are not counted in the total number of games or to the lines of de୮ୢnition, but they do

contribute to the number of lines of proof. The “Supporting Arguments” line measures only the

arguments described in Sections 6.3.1, 6.3.1, and 6.3.2. This proof relies on a large amount of existing

theory in the FCF library which comprises over 40,000 lines of Coq code, and this e୭fort resulted in

several thousand lines of additional reusable theory that was added to the standard library of FCF.

Table 6.1: Proof Complexity

Proof Lines of De୮ୢnition Lines of Proof Games
Single-Trial TୖSet Security 447 3515 19
Single-Trial TୖSet Correctness 611 5510 19
Supporting Arguments 48 1041 12
TୖSet Security 0 1033 0
TୖSet Correctness 0 998 0
SSE Scheme Security 257 920 8
Total 1363 13017 58

The table provides separate columns for de୮ୢnition (security de୮ୢnitions, constructions, interme-

diate games, constructed adversaries, and simulators) and proof (everything else including proof

scripts, program logic judgments, and minor intermediate games). This separation proposes a di-

vision between the essential, cryptographic portion of the proof and the portion required by the

mechanization. The division suggests that the mechanization increased the complexity of the proof

by (roughly) a factor of 10. This increase in e୭fort is large, but it should be considered reasonable

when viewed in the context of the larger engineering e୭fort of developing an implementation of this

scheme. The proof is composed of several arguments, and the more complex arguments are further

decomposed into a sequence of games. This decomposition provides ample opportunity to divide

the proof development e୭fort among a team of programmers.

It is important to note that this proof was completed in a largely manual style in which individual

tactics are applied to transform the goal one step at a time. It is possible to adopt a more automated

96



style in which Coq’s tactic language (Ltac) is used to develop sophisticated tactics that discharge

high-level goals. I could signi୮ୢcantly reduce the number of lines of proof code by adopting this

more automated style of proof. As an experiment, I re-developed the “SSE Scheme Security” proof

using more automation. This is a relatively simple proof that is mostly structural and contains no

interesting arguments, yet I was able to reduce the size of the proof by nearly 20 percent simply by

making clever use of Ltac.

An important engineering concern is the extent to which artifacts developed for this proof could

be reused in other proofs. Notably, the TୖSet that was proved secure and correct in this proof is the

same TୖSet that is used in the more complex SSE schemes developed by Cash et al. By reusing the T-

Set and its theory, I could greatly reduce the e୭fort required to prove the security of any scheme that

requires a correct or secure TୖSet. Of course, the more general-purpose theory that was developed

for this SSE proof could be directly reused by any proof.

Another consideration is the di୭୮ୢculty of changing the proof artifact to respond to changes in the

scheme itself. First consider a minor change, such as a change to the representation (but not the con-

tent) of the database. I could address this change by proving that some game using the new database

representation is equivalent to an existing game using the old representation. This change adds a

new intermediate game to the sequence and increases the size of the proof. Another solution is to

use a reduction to prove the security of the modi୮ୢed scheme assuming the security of the original

scheme. This is a very powerful and general approach, but it also increases the size of the proof. A

third option is to refactor the proof and change the database into an abstraction that could be in-

stantiated with either representation. This solution may require more e୭fort to implement, but it

does not increase the size of the proof, and it results in a proof that is more tolerant of these changes

in the future.

For more signi୮ୢcation changes, it may be very hard to modify the proof. For example, if I wanted

to prove adaptive security of the SSE scheme, I would need to change the way the scheme and the

97



adversaries are modeled, add a random oracle, and change many of the security de୮ୢnitions to the

appropriate adaptive security forms. This is a completely di୭ferent proof, and none of the artifacts

from the non-adaptive proof would be reused. However, much of the general-purpose theory in

FCF that was developed for the non-adaptive security proof would still be applicable in the adaptive

security proof.

6.5 R঎কঊঝ঎঍Wঘছঔ

There has been a large amount of work in the area of formalizing cryptographic proofs in the last

decade, but much of this work only involves simple examples used to demonstrate a tool, frame-

work, or proof technique. This section focuses on mechanized proofs in the computational model

related to non-trivial or practical constructions.

Several complex proofs have been completed in EasyCrypt and CertiPriv 12, a related system for

reasoning about di୭ferential privacy. Stoughton44 proved the security of a simpli୮ୢed version of a

private information retrieval protocol. This is a fairly complex three-party protocol, but the simpli-

୮ୢed scheme only allows a query to retrieve the number of occurrences of a certain keyword in the

database, and not the values associated with that keyword. Barthe et al.7 demonstrate a formaliza-

tion of di୭ferential privacy and a veri୮ୢcation of a non-trivial smart metering system as an example.

Almeida et al.4 prove the security of a standardized public key encryption scheme. Barthe et al. 10

proved security of OAEP in CertiCrypt. Though this is a relatively simple construction, the proof of

security is quite complex, comprising over 10,000 lines of Coq code.

Bhargavan et al. 18 verify an implementation of TLS using the F7 re୮ୢnement type system. This is

a remarkably complex proof, but several steps of the proof must be veri୮ୢed by hand due to the fact

that F7 does not support reasoning about non-zero statistical distance between distributions. Barthe

et al. 8 show how a variant of F* (a successor to F7) can be used to verify implementations of cryp-

98



tographic schemes. This work provides several non-trivial examples including a certi୮ୢed privacy-

preserving system for smart metering.

A certi୮ୢed proof of SSH 23 was completed in CryptoVerif, though this proof is limited to the

transport layer protocol, and to the secrecy and authenticity of the session key only. This security

does not extend to the messages sent over the channel due to a vulnerability in SSH. CryptoVerif was

also used to formally verify the Kerberos network authentication system21.

Roy et al.42 use Protocol Composition Logic to verify the security of Di୭୮ୢe-Hellman key ex-

change as used in Kerberos and IPSec key management. Both are standardized protocols, and the

models and formal proofs are quite complex.

6.6 Cঘগঌকঞজ঒ঘগ

In this chapter, I showed how FCF can be used to construct a proof of security for a complex cryp-

tographic scheme. This result demonstrates that FCF is both scalable and ୯୳exible. In particular, the

basic proof automation features provided by Coq are su୭୮ୢcient, and the higher-order abstraction

available in Coq is very useful for proof engineering. In Chapter 7, I describe how FCF can be used

to prove the correctness of implementations of cryptographic schemes in addition to models. Chap-

ter 7 also includes a simple proof of security of HMAC that is used as part of a larger proof related to

an implementation of HMACwritten in C.

99



7
Provably Secure Implementations

Previous chapters have described e୭forts to prove the security ofmodels of cryptographic systems.

By verifying these models, it is possible to rule out signi୮ୢcant categories of vulnerabilities. But many

vulnerabilities are caused by issues that are outside of the model, or simply by errors in implemen-

tation. The ultimate goal of security veri୮ୢcation is the veri୮ୢcation of the implementations of cryp-

tographic systems. Of course, the implementations are much more complex than the models, and

research in this area is still in its initial stages.

100



In this chapter, I describe two mechanisms to ensure the security of cryptographic sof୴ware. The

୮ୢrst approach uses Coq’s extraction mechanism to produce an implementation from an FCF model.

The second approach uses the Veri୮ୢed Sof୴ware Toolchain (VST) to show that source code written

in C has certain cryptographic properties.

7.1 Eডঝছঊঌঝ঒গঐ Cঘ঍঎ এছঘখ FCFMঘ঍঎কজ

In Section 4.5 I described an operational semantics that can be used to reason about the behavior of

FCF computations on a traditional computer. This semantics is speci୮ୢed in a manner that makes it

executable. Given a computation and a list of “random” input bits, I can run this computation to

obtain either a value or an indication that the input bits were exhausted. I can use the eval com-

mand in Coq to run a computation in this manner, or I can extract the program as described in the

remainder of this section.

Coq has an extraction mechanism that takes a Coq function and produces an equivalent Caml

function. This extraction mechanism will also recursively extract all of the other functions and types

required to execute the function. Given this extraction mechanism, I can produce executable code

using the following process:

1. Extract both the operational semantics and the computation(s) of interest

2. Provide concrete instantiations for all abstract types and functions

3. Produce (or locate) boilerplate code that runs a computation and produces a result

The last step in this sequence is necessary because the operational semantics only describes how

a computation takes a single step. Because all Coq functions must terminate, I cannot write a func-

tion in Coq that repeatedly causes the computation to take a step under the operational semantics

101



until it (possibly) terminates. So I must provide this code in Caml. This code can also obtain ran-

dom bits and provide them to the semantics when needed. Listing 61 contains an example program

that runs a computation. In this listing, evalDet_step is the function that de୮ୢnes the operational

semantics, and randomBits is a function that uses Random.Bool to obtain a number of random

bits from the environment when needed.

let rec runComp_h c s =
match (evalDet_step c s) with
| Cs_done (b, s’) -> Cs_done (b, s’)
| Cs_eof -> let newBits = randomBits 1000 in

runComp_h c (append s newBits)
| Cs_more (c’, s’) -> runComp_h c’ s’

exception InvalidCompState;;

let runComp c =
match (runComp_h c Nil) with
| Cs_done (b, s’) -> b
| Cs_eof -> raise InvalidCompState
| Cs_more (c’, s’) -> raise InvalidCompState

Listing 61: Boilerplate Code that Runs a Computation

To demonstrate that this approach produces working code, I extracted the PRF encryption

scheme described in Section 5.2. I used the Caml code in Listing 61 to run the computation, and

I provided a small number of additional functions to convert between standard Caml types (e.g.

Boolean and integer) and the extracted types. I instantiated the “PRF” with the xor function for bit

vectors. Obviously, xor is not a PRF, but this simple function allows me to test the extraction mech-

anism and verify that I can run the extracted code. If I replace this function with a function that is

believed to be a PRF, then the resulting code would have the security properties guaranteed by the

proof in Section 5.2.

It’s important to note that the extracted program is not very e୭୮ୢcient. It is written in Caml and

can be compiled or interpreted under OCaml. Even when compiled, the resulting OCaml program

is likely to be less e୭୮ୢcient than an equivalent C program, and the garbage collection of OCaml can

be problematic in real-time systems. A more signi୮ୢcant issue for e୭୮ୢciency is that the resulting pro-

102



gram uses a number of Coq types and operations (e.g. unary natural numbers and their related oper-

ations) which were developed for ease of modeling and reasoning instead of e୭୮ୢciency.

The extracted code is probably too ine୭୮ୢcient to be used in production, but it is still valuable.

It can be used to develop a prototype in a “proof of concept” stage of development. That is, a new

cryptosystem can be modeled and proved correct in FCF, and some basic testing can be performed

on the extracted implementation. This implementation would be replaced by a more e୭୮ୢcient im-

plementation at a later stage. The extracted code could also be used as a reference implementation

for testing purposes. When testing the production implementation, the output could be compared

to that of the extracted reference implementation in order to ୮ୢnd bugs and vulnerabilities.

7.2 V঎ছ঒এঢ঒গঐ C Cঘ঍঎

By combining FCF with additional systems for reasoning about C code, it is possible to obtain a

fully veri୮ୢed implementation of a cryptographic system that is e୭୮ୢcient and can be used in pro-

duction. In this section, I describe an approach used to verify the cryptographic properties of an

implementation of HMAC 14 written in C. This section describes joint work with Andrew Appel,

Lennart Beringer, and Katherine Ye, and my main contribution is a model of HMAC and a proof of

its cryptographic properties.

7.2.1 HMAC

HMAC is a symmetric message authentication code (MAC) scheme based on a secure hash function.

It can be used to establish the authenticity of messages sent between two parties that share a com-

mon symmetric key. For example, if Alice wants to send a messageM to Bob, she can send the pair

(M, HMAC(K, M)) whereK is the key shared by Alice and Bob. When Bob receives this pair, he

can check that the second value equalsHMAC(K, M) to verify that the message came from Alice

103



(or someone who knowsK ) and it has not been modi୮ୢed. In order for such a MAC function to be

secure, it must be the case that an adversary who does not knowK would have great di୭୮ୢculty pro-

ducing some messageM’ and a forgedMAC value Z such that Z = HMAC(M’, K). If HMAC is

a PRF, then this unforgeability is implied, and I will prove that our implementation of HMAC is a

PRF.

7.2.2 V঎ছ঒এ঒঎঍ Sঘএঝঠঊছ঎ Tঘঘকঌ঑ঊ঒গ

We use the Veri୮ୢed Sof୴ware Toolchain 5 (VST) to reason about C code and its corresponding ma-

chine code. VST is a Coq library that provides a separation logic for C that allows us to prove that a

program has some speci୮ୢcation in the form of a precondition and a postcondition. Notably, we can

use VST to prove that some C code has the same input/output behavior as a Coq function. So given

a Coq function that speci୮ୢes the behavior of HMAC, we can prove that some C code is functionally

equivalent to that Coq function.

VST is built on top of CompCert 36, which is a fully-veri୮ୢed compiler for C programs. CompCert

provides a semantics for C and a semantics for machine code, and a mechanized proof establishes

that the machine code that results from compilation has the same behavior as the input C program.

Therefore, VST can be used to prove that an implementation in machine code has certain correct-

ness or security properties.

7.2.3 M঎ঌ঑ঊগ঒ণ঎঍ S঎ঌঞছ঒ঝঢ ঊগ঍ Cঘছছ঎ঌঝগ঎জজ ঘএ HMAC

We focus on the implementation of HMAC provided in OpenSSL version 0.9.1c, and we prove the

following:

1. The HMAC code behaves identically to a formalization of the FIPS 198-1 Keyed-HashMes-

sage Authentication Code speci୮ୢcation. The implementation of SHA-256 used as the un-

104



derlying hash function behaves identically to a formalization of the FIPS 180-4 Secure Hash

Standard.

2. An abstract speci୮ୢcation of HMAC is a PRF given certain (reasonable) cryptographic as-

sumptions on the underlying hash function.

3. FIPS 198-1, when using FIPS 180-4 as the underlying hash function, is a re୮ୢnement of the

abstract HMAC speci୮ୢcation.

Because the PRF property is preserved by functional equivalence and re୮ୢnement, we obtain the

following machine-checked theorem.

؄eorem 13.The assembly-language program that results from compiling OpenSSL 0.9.1c using

CompCert implements the FIPS standards for HMAC and SHA-256, and implements a crypto-

graphically secure PRF subject to certain cryptographic assumptions about SHA-256 (enumerated in

Section 7.2.5).

My contribution to this result is the abstract speci୮ୢcation for HMAC and the proof of its crypto-

graphic properties. I will describe this contribution in the remainder of this section and omit details

of other portions of the proof.

7.2.4 Cছঢঙঝঘঐছঊঙ঑঒ঌ ঙছঘঙ঎ছঝ঒঎জ ঘএ HMAC

This subsection describes a mechanization of a cryptographic proof of security of HMAC. The

୮ୢnal result of this proof is similar to the ୮ୢrst HMAC proof of Bellare et al. 14, though the structure

of the proof and some of the de୮ୢnitions are in୯୳uenced by Bellare’s 2006 proof 13. This proof uses

a somewhat abstract model of HMAC in which keys are in {0, 1}𝑏 (the set of bit vectors of length

𝑏), inputs are in {0, 1}∗ (bit lists), and outputs are in {0, 1}𝑐 for arbitrary 𝑏 and 𝑐 s.t. 𝑐 ≤ 𝑏. An

105



implementation of HMACwould require that 𝑏 and 𝑐 are multiples of some word size, and the

input is an array of words, but these issues are typically not considered in cryptographic proofs.

In order to use security results related to this speci୮ୢcation, we must show that this speci୮ୢcation

is appropriately related to the FIPS 198-1 HMAC speci୮ୢcation. I chose to prove the security of the

abstract speci୮ୢcation, rather than directly proving the security of the FIPS speci୮ୢcation, because

there is signi୮ୢcant value in this organization. Primarily, this organization allows me to use the exact

de୮ୢnitions and assumptions from the cryptography literature, and I therefore gain greater assurance

that the de୮ୢnitions are correct and the assumptions are reasonable. Also, this approach demon-

strates how an existing mechanized proof of cryptographic security can be used in a veri୮ୢcation of

the security of an implementation. This organization also helps decompose the proof, and it allows

me to deal with issues of cryptographic security in isolation from issues related to implementation.

7.2.5 HMAC S঎ঌঞছ঒ঝঢ

I mechanized a proof of the following fact. If ℎ is a compression function, and ℎ∗ is a Merkle-

Damgård 38,26 hash function constructed from ℎ, then HMAC based on ℎ∗ is a pseudorandom func-

tion (PRF) assuming:

1. ℎ is a PRF.

2. ℎ∗ is weakly collision-resistant (WCR).

3. The dual family of ℎ (denoted ℎ̄) is a PRF against ⊕-related-key attacks.

The formal de୮ୢnition of a PRF is shown in Listing 62. In this de୮ୢnition, f is a function in K

-> D -> R that should be a PRF. The adversary A is an OracleComp that interacts with either an oracle

constructed from f or with randomFunc, a random function constructed by producing random values

106



Definition f_oracle(k : K)(x : unit)(d : D) :=
ret (f k d, tt).

Definition PRF_G0 : Comp bool :=
k <-$ RndKey;
[b, _] <-$2 A (f_oracle k) tt; ret b.

Definition PRF_G1 : Comp bool :=
[b, _] <-$2 A (randomFunc) nil; ret b.

Definition PRF_Advantage :=
| Pr[PRF_G0] - Pr[PRF_G1] |.

Listing 62: Definition of a PRF

for outputs and memoizing them so they can be repeated the next time the same input is provided.

The randomFunc oracle uses a list of pairs as its state, so an empty list is provided as its initial state.

This security de୮ୢnition is provided in the form of a game in which the adversary tries to deter-

mine whether the oracle is f (in game 0) or a random function (in game 1). Af୴er interacting with

the oracle, the adversary produces a Boolean value, and the adversary wins if this value is likely to

be di୭ferent in the games. I de୮ୢne the advantage of the adversary to be the di୭ference between the

probability that it produces “true” in game 0 and in game 1. I can conclude that f is a PRF if this

advantage is su୭୮ୢciently small.

The de୮ୢnition of a weakly collision-resistant function is shown in Listing 63. This de୮ୢnition uses

a single game in which the adversary is allowed to interact with an oracle de୮ୢned by a keyed function

f. At the end of this interaction, the adversary attempts to produce a collision—a pair of di୭ferent

input values that produce the same output. In this game, I use ?= and != to mean tests for equality

and inequality, respectively. The advantage of the adversary is the probability with which it is able to

locate a collision.

Finally, the security proof assumes that a certain keyed function is a PRF against ⊕-related-key

attacks (RKA). This de୮ୢnition (Listing 64) is similar to the de୮ୢnition of a PRF, except the adversary

is also allowed to provide a value that will be xored with some ୮ୢxed value to produce the key used

by the PRF. Note that this assumption is on the dual family of ℎ, in which the roles of inputs and

107



Definition Adv_WCR_G :=
k <-$ RndKey;
[d1, d2, _] <-$3 A (f_oracle k) tt;
ret ((d1 != d2) && ((f k d1) ?= (f k d2))).

Definition Adv_WCR := Pr[Adv_WCR_G].

Listing 63: Definition ofWeak Collision-Resistance

keys are reversed. So a single input value is chosen at random and ୮ୢxed, and the adversary queries the

oracle by providing values which are used as keys.

Definition RKA_F s p :=
ret (f ((fst p) xor k) (snd p), tt).

Definition RKA_R s p :=
randomFunc s ((fst p) xor k, (snd p))

Definition RKA_G0 :=
k <-$ RndKey; [b, _] <-$\$$2 A RKA_F tt; ret b.

Definition RKA_G1 :=
k <-$ RndKey; [b, _] <-$\$$2 A RKA_R nil; ret b.

Definition RKA_Advantage :=
| Pr[RKA_G0] - Pr[RKA_G1] |.

Listing 64: Definition of Security against⊕ Related-Key Attacks

The proof of security has the same basic structure (Figure 7.1) as Bellare’s 2006 HMAC proof 13,

though I simplify the proof signi୮ୢcantly by assuming ℎ∗ is WCR. The proof makes use of a nested

MAC (NMAC) construction that is similar to HMAC, but it uses ℎ∗ in a way that is not typically

possible in implementations of hash functions. The proof begins by showing that NMAC is a PRF

given that ℎ is a PRF and ℎ∗ is WCR. Then I show that NMAC and HMAC are “close” (that no

adversary can e୭fectively distinguish them) under the assumption that ℎ̄ is a ⊕-RKA-secure PRF.

Finally, I combine these two results to derive that HMAC is a PRF.

I also mirror Bellare’s proof by reasoning about slightly generalized forms of HMAC and NMAC

(called GHMAC and GNMAC) that require the input to be a list of bit vectors of length 𝑏. The

proof also makes use of a “two-key” version of HMAC that uses a bit vector of length 2𝑏 as the key.

108



..ℎ PRF.

ℎ∗ WCR

.

NMAC
PRF

. ℎ̄ ⊕-RKA
PRF

. HMAC/NMAC
“close”

.

HMAC
PRF

.....

Figure 7.1: HMAC Security Proof Structure

To simplify the development of this proof, I build HMAC on top of these intermediate construc-

tions in the abstract speci୮ୢcation (Listing 65).

Definition h_star k (m : list (Bvector b))
:= fold_left h m k.

Definition hash_words := h_star iv.

Definition GNMAC k m :=
let (k_Out, k_In) := splitVector c c k in
h k_Out (app_fpad (h_star k_In m)).

Definition GHMAC_2K k m :=
let (k_Out, k_In) := splitVector b b k in
let h_in := (hash_words (k_In :: m)) in
hash_words (k_Out :: (app_fpad h_in) :: nil).

Definition HMAC_2K k (m : list bool) :=
GHMAC_2K k (splitAndPad m).

Definition HMAC (k : Bvector b) :=
HMAC_2K ((k xor opad) ++ (k xor ipad)).

Listing 65: HMACAbstract Specification

In Listing 65, splitAndPad is a function that produces a list of bit vectors from a list of bits (padding

the last bit vector as needed), and app_fpad is a padding function that produces a bit vector of length

𝑏 from a bit vector of length 𝑐. In the de୮ୢnition of the HMAC function, we use constants opad and ipad

to produce a key of length 2𝑏 from a key of length 𝑏. These functions and constants are parameters

to the de୮ୢnitions, and concrete values for these items are provided by the FIPS speci୮ୢcations.

The statement of security for HMAC is shown in Listing 66. We show that HMAC is a PRF by

giving an expression that bounds the advantage of an arbitrary adversary 𝐴. This expression is the

sum of three terms, where each term represents the advantage of some adversary against some other

109



security de୮ୢnition.

The listing describes all the parameters to each of the security de୮ୢnitions. In all these de୮ୢni-

tions, the ୮ୢrst parameter is the computation that produces random keys, and in PRF_Advantage and

RKA_Advantage, the second parameter is the computation that produces random values in the range

of the function. In all de୮ୢnitions, the penultimate parameter is the function of interest, and the ୮ୢ-

nal parameter is some constructed adversary. The descriptions of these adversaries are omitted for

brevity, but only their computational complexity is relevant (e.g. all adversaries are in ZPP assuming

adversary A is in ZPP).

Theorem HMAC_PRF:
PRF_Advantage ({0, 1}^b) ({0, 1}^c) HMAC A <=
PRF_Advantage ({0, 1}^c) ({0, 1}^c) h B1 +
Adv_WCR ({0, 1}^c) h_star B2 +
RKA_Advantage ({0, 1}^b) ({0, 1}^c)

(BVxor b) (dual_f h) B3.

Listing 66: Statement of Security for HMAC

It is possible to view the result in Listing 66 in the asymptotic setting, in which there is a security

parameter 𝜂, and parameters 𝑐 and 𝑏 are polynomial in 𝜂. In this setting, it is possible to conclude

that the advantage of 𝐴 against HMAC is negligible in 𝜂 assuming that each of the other three terms

is negligible in 𝜂. I can also view this result in the concrete setting, and use this expression to obtain

exact securitymeasures for HMACwhen the values of 𝑏 and 𝑐 are ୮ୢxed according the sizes used by

the implementation. The latter interpretation is more informative, and probably more appropriate

for reasoning about the cryptographic security of an implementation.

7.3 R঎কঊঝ঎঍Wঘছঔ

The result described in Section 7.2.1 is the ୮ୢrst fully foundational end-to-end veri୮ୢcation of the

cryptographic properties of a machine code implementation. Some previous e୭forts have produced

similar results that are more limited or contain gaps in the mechanization that must be veri୮ୢed man-

110



ually. This section describes e୭forts related to verifying cryptographic security (in the computational

model) of implementations.

EasyCrypt has been used in a proof of security of an implementation of OAEP with RSA4. The

implementation is obtained by converting a program in the language of EasyCrypt to C. This C pro-

gram is compiled to machine code using CompCert, and a separate tool veri୮ୢes that machine code

leaks no more information in the program counter trace than the C program. This mechanization

contains several gaps that require inspection. The program that extracts the C program is unveri୮ୢed

Python code, and there is no guarantee that the extracted program is equivalent to the EasyCrypt

program. Further, there is no formal relationship between the semantics of C and the semantics of

EasyCrypt, so it is necessary to inspect these semantics to ensure that the security properties of an

EasyCrypt program transfer to the corresponding C program.

Cadé and Blanchet showed24 how to extract a Caml program from a CryptoVerif model. The

result is accompanied by a proof that the extraction mechanism is correct and the extracted code

enjoys the same security properties of the model. This proof is not mechanized, however, and it is

necessary to trust that the extraction is implemented correctly. Aizatulin et al. 3 developed a system

to extract a CryptoVerif model from C code. This is a very useful and practical system, but there

is no mechanized proof that this extraction produces a CryptoVerif program that is semantically

equivalent to the C program.

Bhargavan et al. 19 prove the security of a implementation of TLS in F# using the F7 type system.

This is a remarkably complex proof, and the resulting code is a fully-feature reference implementa-

tion. F7 is not capable of probabilistic reasoning, however, and many parts of the proof are lef୴ as

assumptions.

111



7.4 Cঘগঌকঞজ঒ঘগ

In this chapter, I described two di୭ferent mechanism for reasoning about the security of crypto-

graphic implementations using FCF. These proofs were enabled by the ୯୳exibility of FCF and direct

integration with Coq, which allow results in FCF to be easily combined with other Coq mecha-

nisms, libraries, and proofs.

112



8
Summary and Conclusion

I have presented a new framework for mechanized cryptographic proofs which improves on the

state of the art in several areas, while making acceptable sacri୮ୢces in others. Notably, FCF features

a fully foundational design (Chapters 3 and 4) that supports trustworthy extension, and it pro-

vides su୭୮ୢcient ease of use to allow the development and checking of complex proofs (Chapter 6).

FCF also supports advances in the state of the art of veri୮ୢcation of cryptographic implementations

(Chapter 7) by providing a mechanism to combine a proof of cryptographic security with a proof of

113



functional correctness in Coq.

I repeat the comparison table from Chapter 3 in Table 8.1. The scores in this table are explained

in Chapter 3, and I have provided justi୮ୢcation for the scores of FCF throughout this paper. FCF

performs relatively well for all attributes except forAutomation, though I have shown in Chapter 6

that the automation and other features provided by Coq and FCF support large proofs of security

for complex schemes.

FCF EasyCrypt CertiCrypt CryptoVerif F*
Familiarity 4 4 2 4 2
Automation 2 3 2 5 3

Trustworthiness 5 4 5 4 3
Expressivity 4 5 5 2 3
Extensibility 5 3 4 2 3

Concrete Security 5 5 5 5 2
Abstraction 5 4 4 2 2

Implementation 5 4 1 4 4

Table 8.1: Comparison ofMechanized Cryptography Systems

8.1 C঑ঘঘজ঒গঐ ঊ Cছঢঙঝঘঐছঊঙ঑঒ঌ Pছঘঘএ Fছঊখ঎ঠঘছঔ

All of the systems described in Table 8.1 are very capable systems for developing and checking cryp-

tographic proofs. When deciding on a system to use to mechanize a proof, the correct choice will

largely be determined by the details of the cryptographic scheme and the desired outcome of the

proof.

If CryptoVerif is capable of modeling the cryptographic scheme of interest and the security de୮ୢni-

tions, then using this tool would probably be a wise choice. The level of automation in CryptoVerif

signi୮ୢcantly reduces the level of e୭fort required to complete the proof. Unfortunately, CryptoVerif

is not capable of expressing many interesting cryptographic schemes and security de୮ୢnitions.

114



If the goal is a proof related to an implementation, or the level of rigor required in the proof is

relatively low, then perhaps the proof should be completed using F*. The lack of probabilistic rea-

soning results in more “gaps” in the proof compared to the other framework, but the e୭fect of these

gaps can be reduced by properly engineering the proof. Overall, F* strikes a good balance between

ease of use and level of rigor, and the fact that the F# code that de୮ୢnes the scheme is executable is a

signi୮ୢcant bene୮ୢt.

The choice between FCF, CertiCrypt, and EasyCrypt probably comes down to particular details

of the proof and personal preferences of the developer. If the developer is comfortable with Coq,

then it may be more reasonable to complete the proof in FCF or CertiCrypt. If not, EasyCrypt may

be a better choice because the tool is simpler and easier to learn than Coq. If EasyCrypt lacks the

theory required to complete the proof, and the developer is not comfortable modifying the Easy-

Crypt source code to add this theory, then FCF or CertiCrypt would be a better choice. There may

be certain constructions or de୮ୢnitions that are di୭୮ୢcult to model in FCF due to its pure functional

language that is not Turing-complete. In this case, CertiCrypt or EasyCrypt may be a better choice.

In summary, none of these systems are clearly better in all circumstances, and the relative advan-

tages of these systems are limited to certain categories of circumstances. Choosing the most appro-

priate system for a particular proof requires a good understanding the subtleties of the proof as well

as the capabilities of these systems.

8.2 Fঞঝঞছ঎Wঘছঔ

Though the last decade has produced a signi୮ୢcant amount of improvement to the state of the art

in mechanization of cryptographic proofs, this technology still has a long way to go before it can be

routinely used by cryptographers. In the remainder of this chapter, I will describe the main weak-

nesses in this technology and propose avenues for future research.

115



A signi୮ୢcant issue with current general-purpose cryptographic proof systems is that they require

the developer to reason about the cryptographic scheme at a very low level of abstraction. For ex-

ample, where a conventional proof would say “by a one-time pad argument, the values of x are

uniformly distributed.” In a mechanized proof, several steps are required to demonstrate that the

one-time pad argument can be applied to the current game, indicate where it should be applied, and

transform the game into the desired ୮ୢnal form. This process may produce proof obligations related

to program equivalence or similar goals that require the develop to produce loop invariants or prove

other judgments on programs. Of course, the one-time pad argument is a very simple one, and this

issue is only magni୮ୢed when more complex arguments are applied.

The solution to this problem is to develop a higher-level interactive proof system that allows

the developer to select an argument and indicate an expression or other location in the game where

that argument should be applied. Proof search could be used to locate a proof that the argument is

applicable at that location, and heuristics could even be used to propose candidate locations where

an argument might be valid. When necessary, the developer will be prompted for loop invariants or

other facts that are needed by the proof search. The system should search judgments that have been

proven in the past, since the same (or related) judgments are of୴en reused in di୭ferent parts of the

proof. This system can simply be a front end to FCF or EasyCrypt, so it does not need to be fully

trusted.

Another issue with current cryptographic proof frameworks is that they all lack a good, general-

purpose mechanism for reasoning about the e୭୮ୢciency and complexity of programs. CertiCrypt and

CryptoVerif include mechanisms that ensure all programs are probabilistic polynomial time, but

this approach does not support other cost models and complexity classes. FCF supports any cost

model and complexity class, but only a simple demonstration using an axiomatic cost model has

been provided so far. This problem will always be challenging since these frameworks are extensible.

It is of୴en necessary to assign a cost to an abstract function that only has an axiomatic de୮ୢnition, and

116



so the cost of the function must be assigned axiomatically.

More work is necessary to demonstrate that axiomatization of cost models is su୭୮ୢciently expres-

sive and provides a reasonable level of assurance. For example, it would be informative to develop

a uniform polynomial time cost model for FCF. Another approach is to develop a separate pro-

gramming language and/or semantics for each cost model of interest, and program the constructed

adversaries (and other programs) of interest in that language. This language should be su୭୮ୢciently

expressive to contain all of the necessary types and operations used by the constructed adversaries,

and it should have a semantics that indicates the cost of running a program.

Finally, there is still much work to be done in the area of reasoning about cryptographic imple-

mentations. In Chapter 7, I describe the ୮ୢrst fully foundational, end-to-end proof of the crypto-

graphic security properties of an implementation, but this is still just initial work in this area. Future

work should consider constructions that ୯୳ip coins and use FCF’s operational semantics to show

that the result is equivalent to a C program that reads random data from a stream. The proof of ad-

equacy of the denotational semantics assumes that this random input is uniform, but future work

should consider the practical issue that the randomness supplied to a program is never truly uni-

form. In this case, it is important to bound the “insecurity” introduced by using input that is merely

“close” to uniformly random.

Another issue with implementations is reasoning about side channels. The proof of OAEP in

EasyCrypt4 uses a separate analysis to ensure that the implementation does not leak information

through side channels. A more general approach would include side channels in the cryptographic

model, and the proof would assume restrictions on the information that is leaked to the adversary

through these side channels. Then it may be possible to prove that an implementation leaks no

more through side channels than what is assumed in the cryptographic proof.

117



A
Adequacy of Operational Semantics

In Section 4.5 I describe an operational semantics that can be used to reason about implementations

of cryptographic systems and I state that this semantics is equivalent (in a particular sense) to the de-

notational semantics used to reason about cryptographic properties. The denotational semantics is

adequate with respect to the operational semantics under a particular interpretation of probability.

That is, the denotational semantics corresponds to the in୮ୢnite unrolling of the small-step semantics

when the input bits are assumed to be uniformly distributed. In this chapter, I describe this fact in

118



greater detail, and I describe the Coq proof of this fact, which is interesting and non-trivial.

A.1 T঑঎ Vঊকঞ঎ ঘএ A঍঎હঞঊঌঢ

Similar frameworks for developing cryptographic proofs are based only on a probabilistic semantics,

with no semantics that corresponds to a traditional model of computation. FCF includes a tradi-

tional operational semantics along with an equivalent probabilistic denotational semantics because

several bene୮ୢts are derived from this organization.

The primary value of the operational semantics and the proof of adequacy is that this fact enables

FCF to reason about implementations of cryptographic schemes in a highly trustworthy manner.

Implementations of cryptographic schemes behave in the manner of the operational semantics,

in which values are stored in memory and random bits are obtained by reading from some list or

stream provided by the environment. By proving that an implementation is equivalent to (or a re-

୮ୢnement oૄ) some model when executed under the operational semantics, it is possible to conclude

that the implementation inherits the security properties of the model. More information about se-

cure implementations is provided in Chapter 7.

A signi୮ୢcant bene୮ୢt of the proof of adequacy is that any cryptographic construction that is

proven secure will also be secure when interpreted under the operational semantics. In conven-

tional cryptographic proofs, procedures are modeled as probabilistic polynomial time Turing ma-

chines. Because the operational semantics provides a basis for a similar model of computation, and

because conclusions are derived from a probabilistic semantics that is equivalent to that model, secu-

rity claims in FCF system are very similar to the claims in conventional proofs in cryptography.

A related bene୮ୢt is that it is not necessary to trust that the probabilistic semantics describes some

reasonable behavior of a probabilistic programming language. Instead, one can inspect the oper-

ational semantics in order to conclude that it is reasonable, and also inspect the statement of ade-

119



quacy. If the probabilistic semantics is not trusted, it can be changed it at will in order to support

additional programming constructs and arguments.

Additionally, it is of୴en necessary to prove that some program transformation is sound with re-

spect to the probabilistic semantics, and it may be easier to prove that the transformation is sound

with respect to the operational semantics. By proving these semantics equivalent, we can conclude

that any two programs that are equivalent with respect to the operational semantics are also equiva-

lent with respect to the denotational semantics. For example, equivalences related to loop unrolling

are trivial to prove under the operational semantics, and much more challenging under the denota-

tional semantics.

A.2 A঍঎હঞঊঌঢ T঑঎ঘছ঎খ

Section 4.5 contained a statement of the theorem of adequacy, which is repeated in Theorem 14. In

this section, I provide more information about the de୮ୢnitions that related to this theorem, and I

described its proof. The proof itself is very interesting, and it contains several insights into proving

facts related to discrete probability distributions and (in୮ୢnite) limits in Coq.

؄eorem 14. If c is well-formed, then lim
𝑛→∞

[𝑐]𝑛 = J𝑐K
A.2.1 W঎কক-এঘছখ঎঍ Cঘখঙঞঝঊঝ঒ঘগজ

It is possible to write non-terminating programs in FCF, such as the following repeated experiment:

Repeat (ret 0) (fun x => x ?= 1).

This program runs the command (ret 0) until the result is 1, which of course will never hap-

pen. A program which does not terminate in all cases corresponds to a distribution in which the

probability mass does not sum to one. We only want to consider probability distributions, so we

will rule out such programs by requiring programs to be well-formed. A computation is well-formed

120



if, for all Repeat statements in the computation, the support of the repeated computation contains

at least one value that is accepted by the termination predicate. Note that a well-formed computa-

tion will not necessarily terminate in the operational semantics, but it will terminate with probabil-

ity one when the input is a uniformly distributed stream of random bits.

The theorem of adequacy only applies to well-formed computations because the denotation of a

non-well-formed computation is unde୮ୢned. Recall the denotation of a Repeat statement:

J𝑅𝑒𝑝𝑒𝑎𝑡 𝑐 𝑃 K = 𝜆𝑥.(1𝑃 𝑥) � (J𝑐K 𝑥) �
ฟඉ

𝑏∈𝑃
(J𝑐K 𝑏)

ภ

−1

The ୮ୢnal term in this product is the inverse of the total probability mass that matches the predi-

cate P. If the computation is not well-formed, then this sum is zero and the value of the inverse term

is unde୮ୢned.

A.2.2 LঘঠD঒জঝছ঒ঋঞঝ঒ঘগ Aঙঙছঘড঒খঊঝ঒ঘগ

Given a program, I can approximate the probability that the program returns some value x as fol-

lows:

• Let L be the list of all possible bit lists of length n

• Run the computation (under the operational semantics) on all lists in L and collect the re-

sults in list R

• Let c be the number of results in R that equal some x s’ for some s’

• The approximation at level n is 𝑐/𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) = 𝑐/2𝑛

This approximation is “low” because some of the executions will produce eof, and these results

are not included in the count. I use the notation [𝑐]𝑛 to denote the low distribution approximation

of computation 𝑐 at level 𝑛.

121



A.2.3 Pছঘঘএ ঘএ A঍঎હঞঊঌঢ

In the remainder of this section I sketch the proof of adequacy of the probabilistic semantics. Like

all other facts related to FCF, this fact has been formally proven in Coq, and the description is in-

cluded in this paper only for the purpose of illustration.

The proof proceeds by induction on the structure of the computation 𝑐. The base cases (Ret and

Rnd) can be discharged directly, whereas the inductive cases (Bind and Repeat) require a signi୮ୢcant

amount of explanation. We will use the case of Bind to explain the challenge with these cases.

In the case of Bind, the goal is:

lim
𝑛→∞

[𝐵𝑖𝑛𝑑 𝑐 𝑓]𝑛 = J𝐵𝑖𝑛𝑑 𝑐 𝑓K
and I have the following induction hypotheses:

lim
𝑛→∞

[𝑐]𝑛 = J𝑐K
∀𝑏 ∈ 𝑠𝑢𝑝𝑝(J𝑐K), lim

𝑛→∞
[𝑓 𝑏]𝑛 = J𝑓 𝑏K

These induction hypotheses tell me that the approximations are correct for the subterms. I need

to use these induction hypotheses to reach the goal, but I cannot apply them directly. The prob-

lem is that each hypothesis considers an approximation at level n, but when I approximate the term

“Bind c ૄ” at level n, I don’t use n bits for each subterm. Rather, I use 𝑡 ≤ 𝑛 bits for the ୮ୢrst subterm,

and then 𝑡ດ ≤ 𝑛 − 𝑡 bits for the second subterm.

The solution to this problem involves an alternative method of approximating distributions for

Bind terms. This method, called the bind approximation, is provided in De୮ୢnition 5.

122



Definition 5 (Bind Approximation).

𝐵[𝑐, 𝑓]𝑛 = 𝜆𝑎. ඉ
𝑏∈𝑠𝑢𝑝𝑝(J𝑐K)

([𝑐]𝑛 𝑏) � ([𝑓 𝑏]𝑛 𝑎)

The bind approximation has two important features. First, an approximation at level n uses up

to n bits for each subterm, allowing me to use my induction hypotheses. Second, it is structurally

the same as the denotation of a Bind term, except approximations of subterms are used instead of

their denotations. I use the bind approximation to prove the limit of the low distribution approxi-

mation for bind terms using the squeeze theorem. That is, I show that there are two functions (both

derived from the bind approximation) that bound the low distribution approximation from above

and from below, and both these functions have the desired limit. The rest of this proof is described

in Theorems 15, 16, 17, and 18.

؄eorem 15 (Bounded from Above). For all n,

[𝐵𝑖𝑛𝑑 𝑐 𝑓]𝑛 ≤ 𝐵[𝑐, 𝑓]𝑛

Proo؟. The low distribution approximation only gets to use n bits total, whereas the bind approx-

imation is allowed to use n bits per subterm. Clearly, the bind approximation must be at least as

good as the low distribution approximation, so the probability of any event in the bind approxi-

mation must be greater than or equal to the probability of the same event in the low distribution

approximation.

؄eorem 16 (Bounded from Below). For all n,

𝐵[𝑐, 𝑓]𝑛/2 ≤ [𝐵𝑖𝑛𝑑 𝑐 𝑓]𝑛

123



Proo؟. Both approximations use at most n bits total, but 𝐵[𝑐, 𝑓]𝑛/2 may only use at most 𝑛/2 bits for

each subterm. So for the cases in which c requires more than 𝑛/2 bits, the approximation produced by

[Bind c f]𝑛 will be at least as good as the approximation produced by 𝐵[𝑐, 𝑓]𝑛/2.

The formal proofs of Theorem 15 and 16 are much more complex than the informal proofs in-

cluded in this paper. To conclude that some approximation is “at least as good” as some other ap-

proximation, I consider distribution approximations in the form of binary trees, where I branch on

the value of each input bit, and I can compute the probability of some event by summing the leaves

corresponding to that event and dividing by the total number of leaves. I developed additional al-

ternative approximations that produce trees, and then proved that these tree-based approximations

are identical to the corresponding non-tree-based approximations. To prove that some tree-based

approximation t is at least as good as some other approximation t’, I show that the two trees are

identical, except t is allowed to have an arbitrary tree any place where t’ has a leaf node containing

no value (corresponding to input list exhaustion). Once it is established that t is at least as good as t’,

a simple proof by induction will show that the probability of any event in t is greater than or equal

to the probability of the same event in t’.

I have shown that the low distribution approximation is bounded on both sides by these func-

tions derived from the bind approximation. Now I show that the in୮ୢnite limit of both of these

functions is equal to the value given by the denotational semantics. Then, by the squeeze theorem,

the in୮ୢnite limit of the low distribution approximation for 𝐵𝑖𝑛𝑑 is equal to the value given by the

denotational semantics.

؄eorem 17 (Limit of ”Above” Function).

lim
𝑛→∞

[𝑐]𝑛 = J𝑐K ∧ ∀𝑏 ∈ 𝑠𝑢𝑝𝑝(J𝑐K), lim
𝑛→∞

[𝑓 𝑏]𝑛 = J𝑓 𝑏K
⇒ lim

𝑛→∞
𝐵[𝑐, 𝑓]𝑛 = J(𝐵𝑖𝑛𝑑 𝑐 𝑓)K
124



Proo؟. Af୴er unfolding some de୮ୢnitions I get the following goal:

∀𝑎, lim
𝑛→∞ ඉ

𝑏∈𝑠𝑢𝑝𝑝(J𝑐K)
([𝑐]𝑛 𝑏) ∗ ([𝑓 𝑏]𝑛 𝑎)

= ඉ
𝑏∈𝑠𝑢𝑝𝑝(J𝑐K)

J𝑐K𝑏 ∗ (J(𝑓 𝑏)K𝑎)

By the (iterated) sum rule of limits, it is su୭୮ୢcient to show:

∀𝑏 ∈ 𝑠𝑢𝑝𝑝(J𝑐K), ∀𝑎,

lim
𝑛→∞

([𝑐]𝑛 𝑏) ∗ ([𝑓 𝑏]𝑛 𝑎) = J𝑐K𝑏 ∗ (J(𝑓 𝑏)K𝑎)

This fact follows from our hypotheses and the product rule of limits.

؄eorem 18 (Limit of ”Below” Function).

lim
𝑛→∞

[𝑐]𝑛 = J𝑐K ∧ ∀𝑏 ∈ 𝑆𝑢𝑝(J𝑐K), lim
𝑛→∞

[𝑓 𝑏]𝑛 = J𝑓 𝑏K
⇒ lim

𝑛→∞
𝐵[𝑐, 𝑓]𝑛/2 = J(𝐵𝑖𝑛𝑑 𝑐 𝑓)K

Proo؟. This statement is just like the statement of Theorem 17, except the approximation is taken

at level 𝑛/2 instead of level 𝑛. Since we are considering limits at in୮ୢnity, this fact clearly follows from

Theorem 17.

The proof for the Repeat case is very similar. I create an alternative approximation for Repeat,

denoted 𝑅[𝑐, 𝑃]𝑛, where c is the repeated experiment, P is the termination predicate, and n is the

approximation level. This approximation acts as if the computation 𝑐 is allowed to read 𝑛 bits from

the input sequence in each iteration. I then squeeze the actual distribution approximation function

between 𝑅[𝑐, 𝑃]⌊√𝑛⌋ and 𝑅[𝑐, 𝑃]𝑛.

125



A.3 Cঘগঌকঞজ঒ঘগ

The proof of adequacy required a large amount of e୭fort to complete, but the value is signi୮ୢcant.

Not only does this fact allow me to use either semantics as a foundation to complete proofs of secu-

rity, it also supports proofs related to implementations using the operational semantics. Without

this theorem it would be necessary to assume a relationship between the two semantics, making any

result that uses this assumption less trustworthy.

126



References

[1] Abadi, M. & Rogaway, P. (2000). Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). In Proceedings of the International Conference IFIP
on Theoretical Computer Science, Exploring New Frontiers of Theoretical Informatics, TCS
’00 (pp. 3–22). London, UK, UK: Springer-Verlag.

[2] A୭feldt, R., Tanaka, M., &Marti, N. (2007). Formal proof of provable security by game-
playing in a proof assistant. In Proceedings of the 1st international conference on Provable
security, ProvSec’07 (pp. 151–168). Berlin, Heidelberg: Springer-Verlag.

[3] Aizatulin, M., Gordon, A. D., & Jürjens, J. (2012). Computational veri୮ୢcation of c protocol
implementations by symbolic execution. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12 (pp. 712–723). New York, NY, USA: ACM.

[4] Almeida, J. B., Barbosa, M., Barthe, G., & Dupressoir, F. (2013). Certi୮ୢed computer-aided
cryptography: e୭୮ୢcient provably secure machine code from high-level implementations. In
Proceedings of the 2013 ACM SIGSAC conference on Computer &#38; communications secu-
rity, CCS ’13 (pp. 1217–1230). New York, NY, USA: ACM.

[5] Appel, A. W. (2011). Veri୮ୢed sof୴ware toolchain. In Proceedings of the 20th European Con-
ference on Programming Languagॶ and Systems: Part of the Joint European Conferencॶ on
Theory and Practice of Soظware, ESOP’11/ETAPS’11 (pp. 1–17). Berlin, Heidelberg: Springer-
Verlag.

[6] Backes, M. &Unruh, D. (2008). Computational soundness of symbolic zero-knowledge
proofs against active attackers. In 21st IEEE Computer Security Foundations Symposium,
CSF 2008 (pp. 255–269). Preprint on IACR ePrint 2008/152.

[7] Barthe, G., Danezis, G., Grégoire, B., Kunz, C., & Zanella-béguelin, S. (2013). Veri୮ୢed com-
putational di୭ferential privacy with applications to smart metering. In In 26th IEEE Com-
puter Security Foundations Symposium, CSF 2013, Los Alamitos.

[8] Barthe, G., Fournet, C., Grégoire, B., Strub, P.-Y., Swamy, N., & Zanella-Béguelin, S. (2014).
Probabilistic relational veri୮ୢcation for cryptographic implementations. In 41st ACM
SIGPLAN-SIGACT Symposium on Principlॶ of Programming Languagॶ, POPL 2014:
ACM. To appear.

127



[9] Barthe, G., Grégoire, B., Heraud, S., & Zanella Béguelin, S. (2011a). Computer-aided security
proofs for the working cryptographer. InAdvancॶ in Cryptoloॻ – CRYPTO 2011, volume
6841 of Lecture Notॶ in Computer Science (pp. 71–90).: Springer.

[10] Barthe, G., Grégoire, B., Lakhnech, Y., & Zanella Béguelin, S. (2011b). Beyond provable
security veri୮ୢable ind-cca security of oaep. In A. Kiayias (Ed.), Topics in Cryptoloॻ (CT-
RSA) 2011, volume 6558 of Lecture Notॶ in Computer Science (pp. 180–196). Springer Berlin
Heidelberg.

[11] Barthe, G., Grégoire, B., & Zanella Béguelin, S. (2009). Formal certi୮ୢcation of code-based
cryptographic proofs. In 36th ACM SIGPLAN-SIGACT Symposium on Principlॶ of Pro-
gramming Languagॶ, POPL 2009 (pp. 90–101).: ACM.

[12] Barthe, G., Köpf, B., Olmedo, F., & Zanella Béguelin, S. (2012). Probabilistic relational
reasoning for di୭ferential privacy. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principlॶ of Programming Languagॶ, POPL ’12 (pp. 97–110). New
York, NY, USA: ACM.

[13] Bellare, M. (2006). New proofs for NMAC and HMAC: Security without collision-
resistance. InAdvancॶ in Cryptoloॻ (CRYPTO) 2006 (pp. 602–619). Springer.

[14] Bellare, M., Canetti, R., & Krawczyk, H. (1996). Keying hash functions for message authenti-
cation. InAdvancॶ in Cryptoloॻ (CRYPTO) 1996 (pp. 1–15).: Springer.

[15] Bellare, M. & Rogaway, P. (2004). Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331. http://eprint.iacr.org/.

[16] Bengtson, J., Bhargavan, K., Fournet, C., Ma୭feis, S., & Gordon, A. D. (2008). Re୮ୢnement
types for secure implementations. In In 21st IEEE Computer Security Foundations Sympo-
sium (CSF 08) (pp. 17–32).: IEEE.

[17] Berg, M. (2013). Formal Verification of Cryptographic Security Proofs. PhD thesis, Saarland
University.

[18] Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., & Strub, P. (2013a). Implementing tls
with veri୮ୢed cryptographic security. In Security and Privacy (SP), 2013 IEEE Symposium on
(pp. 445–459).

[19] Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., & Strub, P. (2013b). Implementing
tls with veri୮ୢed cryptographic security. In Security and Privacy (SP), 2013 IEEE Symposium
on (pp. 445–459).: IEEE.

[20] Blanchet, B. (2007). Computationally sound mechanized proofs of correspondence as-
sertions. In 20th IEEE Computer Security Foundations Symposium (CSF’07) (pp. 97–111).
Venice, Italy: IEEE.

128

http://eprint.iacr.org/


[21] Blanchet, B., Jaggard, A. D., Scedrov, A., & Tsay, J.-K. (2008). Computationally sound
mechanized proofs for basic and public-key Kerberos. InACM Symposium on Information,
Computer and Communications Security (ASIACCS’08) (pp. 87–99). Tokyo, Japan: ACM.

[22] Brown, D. R. L. & Gjøsteen, K. (2007). A security analysis of the nist sp 800-90 elliptic
curve random number generator. Cryptology ePrint Archive, Report 2007/048. http:
//eprint.iacr.org/.

[23] Cadé, D. & Blanchet, B. (2013a). From computationally-proved protocol speci୮ୢcations to
implementations and application to SSH. Journal of Wirelॶs Mobile Networks, Ubiquitoॸ
Computing, and Dependable Applications (JoWUA), 4(1), 4–31. Special issue ARES’12.

[24] Cadé, D. & Blanchet, B. (2013b). Proved generation of implementations from computation-
ally secure protocol speci୮ୢcations. In Principlॶ of Security and Trॸt (pp. 63–82). Springer.

[25] Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., & Steiner, M. (2013). Highly-
scalable searchable symmetric encryption with support for boolean queries. In R. Canetti
& J. Garay (Eds.),Advancॶ in Cryptoloॻ (CRYPTO) 2013, volume 8042 of Lecture Notॶ in
Computer Science (pp. 353–373). Springer Berlin Heidelberg.

[26] Damgård, I. B. (1990). A design principle for hash functions. In G. Brassard (Ed.),Advancॶ
in Cryptoloॻ (CRYPTO) 1989 Proceedings, volume 435 of Lecture Notॶ in Computer Science
(pp. 416–427). Springer New York.

[27] Datta, A., Derek, A., Mitchell, J. C., & Roy, A. (2007). Protocol composition logic (pcl).
Electronic Notॶ in Theoretical Computer Science, 172, 311–358.

[28] Datta, A., Derek, A., Mitchell, J. C., Shmatikov, V., & Turuani, M. (2005). Probabilistic
polynomial-time semantics for a protocol security logic. In Proceedings of the 32nd interna-
tional conference on Automata, Languagॶ and Programming, ICALP’05 (pp. 16–29). Berlin,
Heidelberg: Springer-Verlag.

[29] De Cristofaro, E., Jarecki, S., Liu, X., Lu, Y., & Tsudik, G. (2010). Privacy-protecting
information retrieval, University of Irvine team: Protocol and proofs. Ap-
pendix E of SPAR Program BAA: https://www.fbo.gov/utils/view?id=
32750071e5cf4afc3b7e973d608e657e.

[30] Elgamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete loga-
rithms. Information Theory, IEEE Transactions on, 31(4), 469–472.

[31] Fournet, C., Kohlweiss, M., & Strub, P.-Y. (2011). Modular code-based cryptographic veri୮ୢ-
cation. In Y. Chen, G. Danezis, & V. Shmatikov (Eds.),ACM Conference on Computer and
Communications Security (pp. 341–350).: ACM.

129

http://eprint.iacr.org/
http://eprint.iacr.org/
https://www.fbo.gov/utils/view?id=32750071e5cf4afc3b7e973d608e657e
https://www.fbo.gov/utils/view?id=32750071e5cf4afc3b7e973d608e657e


[32] Goldreich, O. (2006). Foundations of Cryptography: Volume 1. New York, NY, USA: Cam-
bridge University Press.

[33] Goldwasser, S. &Micali, S. (1984). Probabilistic encryption. Journal of Computer and System
Sciencॶ, 28(2), 270 – 299.

[34] Halevi, S. (2005). A plausible approach to computer-aided cryptographic proofs. Cryptology
ePrint Archive, Report 2005/181. http://eprint.iacr.org/.

[35] Herzog, J., Meadows, C., Jaggard, A., Stoughton, A., & Katz, J. (2013). MITLLୖNRL panel:
Easycrypt 0.2 feedback and opinions. http://web.archive.org/web/20140703170052/
https://easycrypt.info/trac/wiki/SchoolUPen2013. Accessed: 2014-07-03.

[36] Leroy, X. (2009). Formal veri୮ୢcation of a realistic compiler. Communications of the ACM,
52(7), 107–115.

[37] The Coq development team (2004). The Coq proof ॵsॷtant reference manual. LogiCal
Project. Version 8.0.

[38] Merkle, R. C. (1990). A certi୮ୢed digital signature. In G. Brassard (Ed.),Advancॶ in Cryp-
toloॻ (CRYPTO) 1989 Proceedings, volume 435 of Lecture Notॶ in Computer Science (pp.
218–238). Springer New York.

[39] Nipkow, T., Paulson, L. C., &Wenzel, M. (2002). Isabelle/HOL — A Proof Assॷtant for
Higher-Order Logic, volume 2283 of LNCS. Springer.

[40] Nowak, D. (2007). A framework for game-based security proofs. Cryptology ePrint Archive,
Report 2007/199. http://eprint.iacr.org/.

[41] Ramsey, N. & Pfe୭fer, A. (2002). Stochastic lambda calculus and monads of probability dis-
tributions. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principlॶ
of Programming Languagॶ, POPL ’02 (pp. 154–165). New York, NY, USA: ACM.

[42] Roy, A., Datta, A., &Mitchell, J. (2008). Formal proofs of cryptographic security of di୭୮ୢe-
hellman-based protocols. In G. Barthe & C. Fournet (Eds.), Trॸtworthy Global Computing,
volume 4912 of Lecture Notॶ in Computer Science (pp. 312–329). Springer Berlin Heidelberg.

[43] Shumow, D. & Ferguson, N. (2007). On the possibility of a back door in the nist sp800-
90 dual ec prng. Advances in Cryptology (CRYPTO) 2007, Rump Session Talk. http:
//rump2007.cr.yp.to/15-shumow.pdf.

[44] Stoughton, A. (2013). Mini-app: Proving a simple private information retrieval proto-
col secure in easycrypt. http://web.archive.org/web/20140703170052/https:
//easycrypt.info/trac/wiki/SchoolUPen2013. Accessed: 2014-07-03.

130

http://eprint.iacr.org/
http://web.archive.org/web/20140703170052/https://easycrypt.info/trac/wiki/SchoolUPen2013
http://web.archive.org/web/20140703170052/https://easycrypt.info/trac/wiki/SchoolUPen2013
http://eprint.iacr.org/
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://web.archive.org/web/20140703170052/https://easycrypt.info/trac/wiki/SchoolUPen2013
http://web.archive.org/web/20140703170052/https://easycrypt.info/trac/wiki/SchoolUPen2013


T঑঒জ ঝ঑঎জ঒জ ঠঊজ ঝঢঙ঎জ঎ঝ using LATEX,
originally developed by Leslie Lamport
and based on Donald Knuth’s TEX. The

body text is set in 11 point Egenol୭f-Berner Gara-
mond, a revival of Claude Garamont’s humanist
typeface. The above illustration, “Science Ex-
periment 02”, was created by Ben Schlitter
and released under ঌঌ ঋঢ-গঌ-গ঍ 3.0. A tem-
plate that can be used to format a PhD thesis
with this look and feel has been released under
the permissive খ঒ঝ (ড11) license, and can be
found online at github.com/suchow/Dissertate
or from its author, Jordan Suchow, at su-
chow@post.harvard.edu.

131

http://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu
mailto:suchow@post.harvard.edu

	Introduction
	Background
	The Coq Proof Assistant
	Proofs in Cryptography
	Mechanized Frameworks for Cryptographic Proofs

	Framework Design
	Design Goals
	Framework Introduction
	Cryptographic Arguments in FCF
	Comparison
	Conclusion

	Technical Description
	Probabilistic Programs
	Theory of Distributions
	Program Logic
	Asymptotic Theory
	Operational Semantics and Reasoning about Code
	Related Work
	Conclusion

	Example Proofs
	El Gamal Encryption
	Symmetric Encryption from a Pseudorandom Function
	A Negative Example: Dual_EC_DRBG
	Conclusion

	Searchable Symmetric Encryption
	Searchable Symmetric Encryption Proof Overview
	Single Keyword Searchable Symmetric Encryption from Tuple Sets
	Tuple Set Instantiation
	Proof Engineering
	Related Work
	Conclusion

	Provably Secure Implementations
	Extracting Code from FCF Models
	Verifying C Code
	Related Work
	Conclusion

	Summary and Conclusion
	Choosing a Cryptographic Proof Framework
	Future Work

	Appendix Adequacy of Operational Semantics
	The Value of Adequacy
	Adequacy Theorem
	Conclusion

	References

